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We propose a novel algorithm for quantum spatial search on a star graph using interleaved continuous-time
quantum walks and marking oracle queries. Initializing the system in the star’s central vertex, we determine

the optimal quantum walk times to reach full overlap with the marked state using dðπ=4Þ ffiffiffiffi
N

p
− ð1=2Þe oracle

queries, matching the well-known lower bound of Grover’s search. We implement the deterministic search in
a database of size seven on photonic quantum hardware, and demonstrate the effective scaling of the approach
up to size 115. This is the first experimental demonstration of quantumwalk-based search on the highly noise-
resistant star graph, which provides new evidence for the applications of quantum walk in quantum
algorithms and quantum information processing.
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Introduction.—Searching large databases is an important
problem with broad applications. The Grover quantum
search algorithm is a hallmark application of quantum
computing with a well-known speedup over classical
searches of an unsorted database [1–3]. The number of
oracle queries required to find a single marked element in
an N-element database, approximately ðπ=4Þ ffiffiffiffi

N
p

, is proven
to be optimal [4] for large N. The success rate of Grover’s
algorithm is 1 −Oð1=NÞ, with subsequent algorithms
modifying the state evolution to produce deterministic
search [5,6]. In the past two decades, quantum search
algorithms have been well investigated theoretically [7–19]
and experimentally [20–36].
The “analog analogue” of Grover’s algorithm is continu-

ous quantum spatial search on a complete graphKN [10,37].
In the Childs and Goldstone (CG) spatial search framework,
the system is evolved under a perturbed graph adjacency
matrix A with the Hamiltonian H ¼ −γA − jωihωj, where
jωi is the marked element and γ is a graph-dependent
parameter. On the complete graph, when γ ¼ ð1=NÞ, after
evolution time T ¼ ðπ=2Þ ffiffiffiffi

N
p

the system is rotated from the
equal superposition to the marked element. Optimally
scaling spatial search is possible on a wide range of other
graphs, including the hypercube, lattices of dimension at
least four, and almost all large random graphs [19].
Significant recent progress has been made in characterizing
the classes of graphs that admit optimal spatial search in the
CG formalism [38]. Spatial search on the star graph, which
has been studied in the context of the CG framework, can be
started in the central vertex to achieve 50% overlap with the
marked vertex after Oð ffiffiffiffi

N
p Þ time [39]. The graph Laplacian

can also be used in place of the adjacency matrix, resulting
in an improved success probability of 1 −Oð1=NÞ when

initialized in the equal superposition [40]. Additionally, the
star graph’s simple topology and resistance to noise make it a
promising candidate for experimental implementation [40].
In this Letter, we show an optimal and deterministic

search on a star graph using a series of alternating phase
flips and “diffusion operators,” which are continuous-time
quantum walks (CTQWs) on an unperturbed star graph. To
be explicit, our algorithm has 100% theoretical success
probability for any database size N. Since simulation of
QW on a star graph can be fast forwarded [41], this results
in an efficient gate model search algorithm. We show the
query complexity of deterministic quantum search on the
star graph structure matches Grover’s algorithm for
unsorted databases. Additionally, our algorithm only uses
marked vertex phase flips, rather than the generalized phase
rotations that are more costly but typically used for
deterministic search [5,6]. This leads to a significantly
more efficient deterministic search circuit.
We investigate the stability and performance of the

algorithm experimentally, using single photons and linear
optical elements. This is the first physical demonstration of
quantum walk-based search on a star graph. We demon-
strate searching a database of size seven as an example,
and show that using the theoretically deterministic algo-
rithm gives high probability of success in practice, even
after multiple iterations. This work naturally raises ques-
tions about speed-up in star graphs, which can now be
investigated by using our method and such a single-photon
interferometric network. Our work opens up an avenue of
applications of quantum information for real-world search-
based tasks on near-term quantum hardware, with the
spatial graph chosen to suit the quantum hardware.
Theoretical idea.—The generalized Grover state evolu-

tion is expressed as
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jα⃗; β⃗i ¼
�Yp

i¼1

UsðβiÞUfðαiÞ
�
jψi; ð1Þ

where UfðαÞ ¼ 1þ ð−1þ eiαÞjωihωj applies a controlled
phase rotation to the marked element(s), and UsðβÞ ¼
1þ ð−1þ eiβÞjψihψ j is a generalized reflection about the
equal superposition jψi. When α ¼ β ¼ π, standard Grover
search is obtained. For other values of α⃗ and β⃗, one can
achieve deterministic search [5,6] or optimal fixed-point
search [42].
In this Letter, we consider a further important generali-

zation of the Grover state evolution for spatial quantum
search, wherein the generalized reflection about the equal
superposition UsðβÞ is replaced by a CTQW UwðtÞ ¼ e−iAt

on an undirected graph with adjacency matrix A [43,44].
Specifically, in this work we focus on a CTQW for a star
graph UwðtÞ ¼ e−itSN , where

SN ¼
X
x≠c

ðjcihxj þ jxihcjÞ ð2Þ

with a central vertex jci connected to N outer vertices jxi.
A star graph with eight total vertices is shown in Fig. 1(a),
where here the central vertex is encoded as jci ¼ j0i and
the marked vertex is j7i.
The walking operator, as the time evolution of the

adjacency matrix SN , has action

UwðtÞjci ¼ cos
ffiffiffiffi
N

p
tjci − i sin

ffiffiffiffi
N

p
tffiffiffiffi

N
p

X
x≠c

jxi;

UwðtÞjxi ¼ jxi þ −1þ cos
ffiffiffiffi
N

p
t

N

X
y≠c

jyi − i sin
ffiffiffiffi
N

p
tffiffiffiffi

N
p jci:

ð3Þ

To achieve search with certainty, we use the state
evolution −ijωi ¼ ðQp

i¼1Uw½ð−1ÞitN;p�UfðπÞÞjsi, where
jsi ¼ UwðtN;p=2Þjci is the initial state, and tN;p ¼
ð2= ffiffiffiffi

N
p Þ arcsin f ffiffiffiffi

N
p

sin½π=2ð1þ 2pÞ�g. That is, starting
in the central vertex jci, the initial state is constructed
with a first QW. Then a series of marked vertex phase flips
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FIG. 1. (a) A star graph S7, consisting of seven outer vertices connected to a central vertex. (b) Efficient quantum circuit to simulate a
CTQW over the star graph SN where N þ 1 ¼ 2m, without ancillas. Here, γk ¼ 2 arccos ð2m−kþ1 − 1Þ−1=2 and α ¼ −2

ffiffiffiffi
N

p
t. (c),(d)

Experimental setup. A pair of photons is generated via the spontaneous parametric down-conversion, with one serving as a trigger and
the other as a single photon. (c) For a higher-dimensional system, quantum states are encoded in both polarizing and spatial degrees of
freedom and prepared by beam displacers (BDs, 22.5 × 10 × 28.3 mm) followed by a polarizing beam splitter (PBS) and wave plates
(WPs). It then undergoes an optical network which implements an evolution of searching, composed of WPs and BDs, and finally is
projected into the basis states via a PBS. Finally the signal photon is detected by avalanche photodiodes, in coincidence with the trigger
photon, having a coincident window of 3 ns. (d) Setup for the Grover search algorithm in the 3 × 3 subspace. We use eight iterations of
evolution as an example.
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and QWs are applied, reaching full overlap with the marked
vertex jωi after p iterations. In order to make the walk
times real valued, the requirement on p is

p ≥
�
π

4

ffiffiffiffi
N

p
−
1

2

�
: ð4Þ

We assume without loss of generality that jci ≠ jωi, by
performing a preliminary oracle query on the central vertex.
Quantum circuit and oracle queries.—We provide an

efficient quantum circuit for fast-forwarded CTQWs on the
star graph SN for N ¼ 2m − 1 in Fig. 1(b), improving upon
the approach for simulation based on general bipartite
graphs given in [41] by reducing the number of qubits
required. This circuit treats jci ¼ j0i in the computational
basis, with jxi for x ¼ 1;…; N labeling the outer star
vertices. The circuit can be decomposed intoOðlogNÞ one-
and two-qubit gates using a single ancilla, or Oðlog2 NÞ
with no ancilla qubits [45]. Details of the circuit’s correct-
ness can be found in Supplemental Material [46].
The other component is the controlled phase flip operator,

which applies a negative phase to the marked vertex. We
address the advantage of exclusively using UfðπÞ, rather
than the generalized phase rotation UfðθÞ. Suppose one has
access to a conventional quantum black box

Ajxijyi ¼ jxijy ⊕ ðx ¼ ωÞi; ð5Þ

that flips the ancilla qubit iff jxi is marked. Then to produce
the phase-flip oracle utilized in quantum search, phase
kickback is utilized: here the ancilla qubit is set to j−i ¼
ð1= ffiffiffi

2
p Þðj0i − j1iÞ so that Ajxij−i ¼ ð−1Þx¼ωjxij−i ¼

ðUfðπÞjxiÞj−i. However, this trick is only applicable when
a phase flip is required, rather than the more general phase
rotation given in Eq. (1). The general case necessitates an
application of A† as well to perform uncomputation, thus,
in essence, doubling the number of “fundamental” oracle
queries. A circuit for this general case is provided in [42].
Thus, it is beneficial in practice, where possible, to restrict
search algorithms to usages of UfðπÞ. The star graph search
algorithm described in this Letter meets this criteria, making
it an excellent approach to deterministic database searching.
Experimental implementation.—We demonstrate the

deterministic searching by simulating CTQWs on a S7
star graph using single photons and linear optics as
illustrated in Fig. 1(c). We construct the 8 × 8 unitary
operator for S7, which has one central node and seven outer
nodes, and simulate the time evolution. In this experiment,
the basis states of an eight-dimensional qudit are encoded
as j0i ¼ jH1i, j1i ¼ jV1i, j2i ¼ jH2i…j7i ¼ jV4i, where
jii (i ¼ 1;…; 4) represents the spatial modes of the single
photons, jHi and jVi represent the horizontal and vertical
polarizations of the photons [47–51]. The state of the
central vertex is jci ¼ j0i and for this demonstration the
marked vertex is chosen to be jωi ¼ j7i.

In our experiment, the initial state of the qudit is prepared
in jsi ¼ 0.576ij0i þ 0.309

P
7
j¼1 jji. First, after passing

through a polarizing beam splitter (PBS) and a half-wave
plate (HWP) at 25.9°, the transmitted photons with the
polarization 0.618jHi þ 0.786jVi are split into two parallel
paths by a beam displacer (BD). Second, two HWPs at 90°
and 0 are inserted into the upper and lower modes,
respectively. Similarly, after going through the second
BD, two HWPs at 16.9° and 22.5° are inserted into the
upper and lower modes, respectively. Finally, after the third
BD followed by three HWPs (at −30.9°, 22.5°, and 0,
respectively) and a quarter-wave plate at 90°, the state is
prepared in jsi.
In order to implement a search on the star graph with

eight vertices, we need to construct a 8 × 8 walking
operator Uw and a marking oracle UfðπÞ. The optimal
walk time is tk ¼ ð−1Þk × 0.724 (k ¼ 1, 2) and the optimal
number of iterations is p ¼ 2. Thus, we apply the unitary
operation U ¼ Uwð0.724ÞUfðπÞUwð−0.724ÞUfðπÞ on the
state jsi and the final state then has 100% overlap with the
marked state. In the basis fjiig, the 8 × 8 unitary operator
U can be decomposed into [52]

U ¼ U8;7 � � �U8;1U7;6 � � �U7;1 � � �U2;1: ð6Þ

Each Uij is an 8 × 8 transformation acting only on a two-
dimensional subspace of the eight-dimensional Hilbert
space with the complementary subspace unchanged.
Only four elements Eii, Eij, Eij and Ejj, are neither 0 or
1. All the other diagonal elements are 1 and all the off-
diagonal elements are 0. To realize Uij, we combine two
different spatial modes into one via BDs and WPs and then
apply a 2 × 2 transformation ðEii

Eji

Eij
Ejj
Þ on the polarizations of

photons in this mode, as an arbitrary 2 × 2 transformation
of the polarization of a photon can be realized via a set
of WPs.
The overlap between the final state and the marked state

is obtained by a two-qubit projective measurement. A PBS
is used to perform the projective measurement on the
photons in the basis fjiig. The clicks of the detectors
correspond to the probabilities of the final state projected
onto the basis states. From the probability distribution of
the basis states we can calculate the overlap between the
final state and the marked state as the squared root of the
probability of the final state being found in j7i.
Figure 2 shows the results of the star search algorithm on

S7 by comparing theoretical predictions and experimental
results of the overlap between the final state and the marked
state for the first 12 search iterations. The overlaps after the
second, seventh, and twelfth iterations are 0.891� 0.002,
0.906� 0.002, and 0.899� 0.002, respectively, which
agree well with the theoretical prediction of 1. As U5 ¼ 1,
the evolution is essentially periodic with a period T ¼ 5
as shown in Fig. 3(a). Thus, using a modified initial state,
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we find for N ¼ 7 the search algorithm reaches full overlap
with the marked state in 2þ 5x iterations, where x is a
positive integer.
One can also perform a quantum simulation of the

searching process by direct implementation of the algo-
rithm in the three-dimensional subspace fjci; jω⊥i; jωig,
where jω⊥i is the equal superposition over the unmarked
outer vertices. This assumes prior knowledge of the

marked vertex. The quantum simulation of the search is
useful to study the coherence of the quantum system after
multiple iterations. A quantum simulation of the searching
process by direct implementation of the algorithm in the
three-dimensional subspace can be realized with a similar
setup and the number of the BDs n increases with the
number of iterations p linearly, i.e., n ∼ 3p=2. The setup for
the quantum simulation can be further simplified and can
always be realized with 3 BDs, as the number of iterations
can be regarded as a parameter of the transformation
operation and tuned by the setting angles of WPs.
To demonstrate the dynamics in the subspace, the

basis states are encoded as j0i ¼ jV1i, j1i ¼ jH2i, and
j2i ¼ jV2i. The state of the central vertex is j0i and that of
the marked vertex is j2i. For each N, we can determine the
marking oracle, the CTQW times, the initial state jsi, and
the optimal number of iterations for a deterministic search
as per Eq. (4).
In our experiment in Fig. 1(d), the initial qutrit state in

the subspace is generated via a PBS, a BD, andWPs. As we
mention above, our experimental setup with linear optics
can implement an arbitrary unitary operation. For each
iteration, the 3 × 3 operation can be decomposed and
implemented via two BDs and WPs. We choose database
sizesN ¼ 5; 10;…; 115 to prove the validity of our optimal
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FIG. 2. Experimental results of the star search algorithm in a database of size seven by comparing theoretical predictions and
experimental results of the overlap between the final state and the marked state for the first 12 iterations of searching. Error bar indicates
the statistical uncertainty which is obtained based on assuming Poissonian statistics.
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FIG. 3. (a) Overlaps between the final state and the marked
state versus the number of iterations for 12 iterations of searching
in an eight-vertex star graph. (b) Experimental results of the
Grover search algorithm in the subspace with the database of size
from 5 to 115 by comparing theoretical predictions and exper-
imental results of the overlap between the final state and the
marked state.
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and deterministic spatial search algorithm. Figure 3(b)
shows the results of the Grover search algorithm in the
database of sizes 5–115 by comparing theoretical predic-
tions and experimental results of the overlap between the
final state and the marked state. The optimal number of
iterations for search increases proportionally to the square
root of the size of the database. For size N ¼ 115, we need
p ¼ 8 iterations to reach 100% overlap. Experimentally,
the overlap is 0.9920� 0.0005 which agrees with theo-
retical prediction very well. To compare the search in the
subspace to that of the original Hilbert space, we also study
the N ¼ 7 case. As expected, search in the subspace is
achieved after two iterations and the overlap between the
final state and the marked state is 0.9921� 0.0005.
Discussion and conclusion.—In this Letter, we have

investigated the star graph under a spatial search framework
that applies alternating controlled phase shifts and CTQWs.
The algorithm can be initialized in the central vertex
and exactly produces the marked vertex state −ijωi in
dðπ=4Þ ffiffiffiffi

N
p

− 1
2
e iterations. Compared to the conventional

approach for spatial search [10], our approach is more
flexible and is directly implementable on gate model
hardware without the need for Trotterization. Since
CTQWs on the star graph can be fast-forwarded, this
results in an efficient gate model circuit for deterministic
search, by replacing the Grover diffusion operator with the
walking circuit and modifying the initial state. The simple
topology of the star graph has advantages for physical
hardware [40].
Our work is the first experimental demonstration of this

new and more flexible database search framework, as well
as the first experimental demonstration of deterministic
spatial search. In doing so we show the advantages of
selecting a graph to suit the quantum hardware. This work
thus demonstrates the alternating phase-walk framework’s
advantages on near-term quantum hardware in reducing the
impacts of noise, on the widely applicable problem of
searching a database.
We implement the star search technique using photonics,

where the experimental results show high agreement with
the theory. The state evolution results are studied for a
specific eight-vertex example, and additionally in the
walk subspace for star graphs with up to 116 vertices. In
fact, the setup is sustainable for application to comparably
large databases. For size N, the number of the bulk
optical elements (BDs) n increases with N linearly, i.e.,
n ∼ 2ðN þ 1Þ − 4.
The implementation setup, consisting of a series of

alternating applications of controlled phase shifts and
QWs, has been shown to be applicable to any graph having
rational eigenvalues, with the appropriate walk times
determinable in closed form [43]. Deterministic and effi-
cient quantum search using this framework has also been
shown on a class of interdependent network graphs [44]
and also has strong ties to perfect state transfer [53,54].

A topic of future study is to fully characterize the class of
graphs that permit deterministic search, with practical
applications for improving success probability in practice
on near-term intermediate-scale quantum hardware having
connectivity constraints [55].
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