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While an information-disturbance trade-off in quantum measurement has been at the core of founda-
tional quantum physics and constitutes a basis of secure quantum information processing, recently verified
reversibility of a quantum measurement requires to refine it toward a complete version of information trade-
off in quantum measurement. Here we experimentally demonstrate a trade-off relation among all
information contents, i.e., information gain, disturbance, and reversibility in quantum measurement.
By exploring quantum measurements applied on a photonic qutrit, we observe that the information of a
quantum state is split into three distinct parts accounting for the extracted, disturbed, and reversible
information. We verify that such different parts of information are in trade-off relations not only pairwise
but also triplewise all at once, and find that the triplewise relation is tighter than any of the pairwise
relations. Finally, we realize optimal quantum measurements that inherently preserve quantum information
without loss of information, which offer wider applications in measurement-based quantum information
processing.

DOI: 10.1103/PhysRevLett.128.050401

Quantum measurement is at the heart of foundational
quantum physics [1] and plays a major role to readout
information in quantum technologies [2–6]. However, since
a quantum measurement inevitably disturbs the measured
system, the amount of extracted information from a
quantum state has a certain limit against the state disturb-
ance [7–10]. A long-standing wisdom of this has been “the
more information of a quantum state is extracted by a
quantum measurement the more the state is disturbed”
[11–18]. Such a trade-off relation has both fundamental and
practical importance in establishing a basis of secure
quantum information processing [19,20].
However, a series of recent works observed that a quan-

tum state disturbed by a quantum measurement weakly
interacting with the measured system can be faithfully
recovered by a postmeasurement operation [21–38]. This
implicates that a part of total information remains and
allows us to recover the original quantum state after the
measurement. Accounting for such a reversible informa-
tion, the reversibility of quantum measurement has been
quantified and analyzed as an additional information con-
tent in quantum measurement [24–27,39]. In this line,
reversing or undoing quantum measurement has been
realized in various physical qubits [32–39], and applied
for quantum error correction [28], gate operation [29,30],
and decoherence suppressions [31–34]. Therefore, verify-
ing trade-off relations encompassing all information con-
tents, i.e., information gain, disturbance, and reversibility in
quantum measurement, has become crucial for developing
reliable quantum technologies.

In this Letter, we experimentally verify a complete
information trade-off relation in quantum measurement.
To that end, we use a scheme for varying the type and
strength of quantum measurement on path-encoded pho-
tonic qutrits and explore the amounts of extracted, dis-
turbed, and reversible information by performing different
types of quantum measurements. We show that three
information contents are quantitatively linked by a triple-
wise trade-off relation obeying the fundamental upper
bounds derived in Ref. [40]. To our knowledge, this is
the first demonstration of the complete trade-off relation
among information gain, disturbance, and reversibility of
quantum measurement all at once. It experimentally proves
that the triplewise trade-off relation is tighter than any of the
pairwise relations [12,27,40] and reveals the emergence of
the reversibility in multidimensional quantum measure-
ments. Finally, we establish optimal quantum measure-
ments inherently preserving quantum information, in the
sense that all information is changed into another form by
measurement without any missing part, which would find
wider applications in measurement-based quantum infor-
mation processing.
Assume that an observer performs a quantum measure-

ment to obtain information from a quantum state jψi [see
Fig. 1(a)]. A quantum measurement can be described by
operators M̂r satisfying

P
r M̂

†
rM̂r ¼ Î. For each outcome

r, the state is altered to jψ ri ¼ M̂rjψi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðr;ψÞp

, where
pðr;ψÞ ¼ hψ jM̂†

rM̂rjψi, and the observer estimates the
state as jψ̃ ri. The amount of information gain by the
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observer can then be quantified by the closeness between
jψi and jψ̃ ri as G ¼ R

dψ
P

r pðr;ψÞjhψ̃ rjψij2 [12]. On
the other hand, the operation fidelity defined by the closeness
between jψi and jψ ri as F ¼ R

dψ
P

r pðr;ψÞjhψ rjψij2
accounts for the amount of transmitted or undisturbed

information. This in turn represents the amount of disturb-
ance by 1 − F. The observer then applies a reversing
operation attempting to restore the initial state jψi. The
reversibility R can then be defined as the maximum success
probability of the faithful recovery of jψi. A reversing opera-
tor R̂r satisfies R̂rM̂rjψi ∝ jψi; ∀ jψi. A quantum meas-
urement can thus split the information of a quantum state into
three parts, i.e., the extractedG, transmitted (undisturbed)F,
and reversibleR information [see Fig. 1(b)]. These quantities
characterize a quantum measurement.
In what follows, we shall explore information contents

by applying quantum measurements given in the form of

M̂r ≡ V̂rðλr0j0ih0j þ λr1j1ih1j þ λr2j2ih2jÞÛr; ð1Þ

satisfying
P

r M̂
†
rM̂r ¼ I (set V̂r ¼ Ûr ¼ I for simplicity),

where different inputs of λri¼0;1;2 determine the type of
measurement. By exploring G, F, and R by changing the
type and strength of measurements, we aim to demonstrate
a complete trade-off relation. To implement quantum
measurements in Eq. (1), we employ a heralded single-
photon qutrit state. A signal photon can have three possible
path modes, lower j0i, middle j1i, and upper j2i path
modes after a set of half-wave plates (HWPs) and polar-
izing beam displacer as shown in Fig. 2. Polarization of
photons in all path modes is arranged to be a horizontal
polarization state. The relative phases ϕ among three path
modes can be controlled by a set of two quarter-wave plates
(QWPs) fixed at 45° and HWP with an angle of α without
changing the polarization state of the signal photons with
ϕ ¼ 2α. Then, we can prepare an arbitrary qutrit state
jψi ¼ a0j0i þ eiϕ1a1j1i þ eiϕ2a2j2i, where

P
i a

2
i ¼ 1.

FIG. 1. (a) Quantum measurement is performed on a quantum
state jψi. Information can be extracted by estimating the state
based on the measurement outcomes, i.e., jψ̃ri, the amount of
which is the information gain G. The input state is altered to jψ ri
and the transmitted (undisturbed) information can be evaluated as
the operation fidelity F. Then, a reversing operation can recover
jψi probabilistically with the reversibility R. (b) The information
of a quantum state is split into three parts, G, F, and R, by a
quantum measurement.

FIG. 2. Schematic of the experimental setup. Quantum measurement and reversing operators are realized using a set of
HWPs and PBSs. By controlling the angles θi of HWPs, a generalized qutrit measurement operator can be implemented as
M̂r ¼ cos 2θ0j0ih0j þ cos 2θ1j1ih1j þ cos 2θ2j2ih2j and the reversal operator can be obtained by the same way as R̂r ¼
cos 2θ00j0ih0j þ cos 2θ01j1ih1j þ cos 2θ02j2ih2j. (PBD, polarizing beam displacer; H45, half-wave plate fixed at 45°; H, half-wave plate;
Q, quarter-wave plate; PBS, polarizing beam splitter; APD, avalanche photodiode.).
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The prepared states undergo M̂r or both M̂r and R̂r. See
Supplemental Material [41] for experimental details.
To evaluate G and F for a qutrit system, we perform the

symmetric and informationally complete positive-operator-
valued measures (SIC POVM) with nine states [42].
POVMs for M̂r and R̂r are realized with a set of HWPs
and polarizing beam splitters (PBSs). The transmission
amplitude for each path is modified by using a set of HWP
and PBS. Different types of quantum measurement oper-
ator in Eq. (1) can be realized by adjusting the angle θi of
HWP as λri ¼ cos 2θi with i ¼ 0, 1, 2 as shown in Fig. 2.
The reversing operator R̂r can be implemented by the same
way as M̂r using a set of HWPs of θ0i and PBSs.

We realize different M̂ðtÞ
r with t ¼ 0, 1, 2, 3 (the explicit

forms are given in the table in Fig. 3) by varying the
measurement strength parametrized by p. We evaluate G

and F for M̂ðtÞ
r with specific p by analyzing the quantum

state tomography for nine pure states of SIC POVM. R is
evaluated by analyzing the final state after both M̂r and R̂r

are performed. See Supplemental Material for the detailed
information on how to extract G, F, and R quantities from

the experimental data [41]. To verify that the initial state is
retrieved after reversing operation, we perform quantum
process tomography (QPT) for analyzing the realized
operation. Detailed information on QPT results are pro-
vided in Supplemental Material [41].
Figure 3 presents the main results. The obtained G, R,

and F for each M̂ðtÞ
r and p are plotted as a marker in

Fig. 3(a). We observe that the amount ofG, F, and R tend to
vary in a trade-off manner and global exchanges occur
among them as p changes. The amount of disturbance

1 − F and information gain G by M̂ð0Þ
r , M̂ð1Þ

r , M̂ð2Þ
r exhibit

monotonic increases as increasing p, while the reversibility

R decreases. M̂ð3Þ
r draws a nontrivial quadratic curve of

information exchanges as λri¼1;2 is given as a quadratic
function of p. The amount of G, F, and R depending on p
are plotted in Supplemental Material for each quantum

measurement M̂ðtÞ
r [41]. While these demonstrate triple-

wise quantitative links among G, F, and R for different
types of quantum measurements, all the obtained results
hold a certain upper limit represented as a shaded surface in
Fig. 3(a), which meets the bound [40]:

(b) (c) (d)

(a)

FIG. 3. Complete trade-off relations in quantum measurement. (a) Experimentally obtained G, F, R are plotted for different quantum

measurements listed in Table I shown herein in blue shading. Black, red, blue, and yellow markers refer to experimental results for M̂ðtÞ
r

with t ¼ 0, 1, 2, 3 and different p, respectively, and solid lines represent the expectation value evaluated by continuously changing p for

an ideal M̂ðtÞ
r . The upper bound of the triplewise trade-off relation G-F-R is represented as a surface. Each pairwise relation is obtained

by projecting onto (b) G-F, (c) G-R, and (d) F-R planes, respectively. The shaded region indicates unphysical regions due to the
bound of each pairwise relations. The dashed lines represent the fitted trade-off relations assuming a nonideal input state
ρ̂ðeÞ ¼ ejψihψ j þ ð1 − eÞI=3. The error parameters e are obtained to be e ¼ 0.960, e ¼ 0.977, e ¼ 0.966, and e ¼ 0.980 for

M̂ð0Þ
r , M̂ð1Þ

r , M̂ð2Þ
r , and M̂ð3Þ

r , respectively. The error bars represent one standard deviation obtained by performing 100 Monte Carlo
simulation runs by taking into account the Poissonian photon counting statistics. The error bars are too small to be visible.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F −

1

dþ 1

r
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G −

1

dþ 1

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

dðdþ 1Þ

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þ

�
2

dþ 1
−G −

R
dðdþ 1Þ

�s
: ð2Þ

Notably, G, F, and R for M̂ðtÞ
r with t ¼ 0, 1, 2, and 3 are

always on the surface irrespective of p, i.e., saturate Eq. (2).
To investigate the pairwise trade-off relations G-F, G-R,

and F-R, we project the 3D plot in Fig. 3(a) onto each
corresponding plane. The obtained results are plotted in
Figs. 3(b)–3(d), where the border to the shaded region
indicates the theoretical bounds of G-F, G-R, and F-R
relation, respectively (see Supplemental Material [41]). We
can observe the quantitative links between two selected
pairs of information contents as varying p. At two extremal
points in each plot, i.e., when representing a von Neumann

projection (e.g., M̂ð0Þ
r withp ¼ 1) or a unitary operation (e.g.,

M̂ð2Þ
r with p ¼ 1=3), all measurements reach the upper

bounds. Otherwise, each measurement M̂ðtÞ
r shows different

tendencies. For example, M̂ð0Þ
r enables us to reach the upper

bound ofG-F andG-R trade-off relations for any value ofp.

On the other hand, none of M̂ð1Þ
r , M̂ð2Þ

r , M̂ð3Þ
r allows us to

attainG,F,R saturating the bounds of the pairwise relations.
Remarkably, our result shows that a certain class of quantum
measurements that saturates neither of the pairwise trade-off
bounds can saturate the triplewise trade-off bound. This in
turn indicates that the triplewise trade-off relation is tighter
than any of the pairwise trade-off relations.
We note that optimizing quantum measurement is gen-

erally aimed at extracting information without any loss of
information. Previously, an optimal measurement has been
required to saturate either the information-disturbance G-F
[43] or the information-reversibility G-R trade-off bound

[39]. Within this condition, M̂ð0Þ
r is an optimal measurement

extracting information G maximally for a fixed amount of

F, but M̂ð1Þ
r is nonoptimal as shown in Fig. 3(b). However,

our result is a clear evidence that, when G, F, and R are
simultaneously taken into account, there exist optimal
quantum measurements beyond the previously identified

ones. In fact, we can reverse M̂ð1Þ
r to faithfully recover the

original quantum state with probability R, which accounts
for the gap between F and G regarded as a missing part of
information previously. Therefore, we can generally define
an optimal quantum measurement as a measurement that
transfers the total information of a quantum state into G, F,
and R without an unaccounted part of information as
illustrated in Fig. 1(b), i.e., a quantum measurement
inherently preserving quantum information. An optimal
quantum measurement thus saturates at least one of the

trade-off bounds. As a result, all the measurements M̂ðtÞ
r

with t ¼ 0, 1, 2, and 3 realized in our experiment are

optimal by saturating the triplewise tight trade-off
bound G-F-R.
A loss of information may arise in quantum measure-

ment due to the effect of noise, ignorance in estimating
quantum states, or inherent nonoptimality. (i) In our
experiment, we consider the effect of noise to the input
states as ρ̂ðeÞ ¼ ejψihψ j þ ð1 − eÞI=3, resulting in dashed
lines in Fig. 3. We can also take into account noise that
makes the final output state in Fig. 1(a) deviated from the
original input, i.e., R̂rM̂rjψi ∝ jψ 0i ≠ jψi, which reduces R
[40]. So, the effect of noise generally brings about a
degradation of the amount of either G, F, or R so
that none of the trade-off relations can be saturated.
(ii) Ignorance and inefficiency when estimating a quantum
state from measurement data may directly reduce the
amount of information gain G [35,39]. (iii) Interestingly,
it turns out that the form of quantummeasurement itself can
also induce information loss. For example, consider a

measurement defined by M̂ð4Þ
0 ¼ j0ih0j þ ffiffiffiffiffiffiffiffiffiffiffi

1 − p
p j1ih1j þ

j2ih2j and M̂ð4Þ
1 ¼ ffiffiffiffi

p
p j1ih1j for 0 ≤ p ≤ 1. We experimen-

tally obtainG, F, and R by changing p and find that none of
the trade-off bounds can be saturated (see Fig. 4) (except

when p ¼ 0). M̂ð4Þ
r may be inherently nonoptimal as there

exists a part of information that is not changed into any
of G, F, R, even if the measurement is performed per-
fectly without noise and ignorance (see Supplemental
Material [41]).

FIG. 4. Information loss by a weak quantum measurement.
Experimentally obtained G, F, and R for M̂ð4Þ

r are plotted by
markers. The green solid line represents the changes of G, F, and

R obtained assuming ideally performed M̂ð4Þ
r in the region

0 ≤ p ≤ 1, while the purple solid line corresponds to the bound

of the triplewise trade-off relation. M̂ð4Þ
r cannot reach the upper

bound of the triplewise trade-off relation except when it repre-
sents a unitary operator p ¼ 0. The green dashed line refers to
results obtained assuming a nonideal input state with e ¼ 0.963.

Experimental results for pairwise trade-off relations for M̂ð4Þ
r are

provided in Supplemental Material [41].
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From a fundamental point of view, our result is a first
experimental proof of the complete trade-off relation
among the extracted, disturbed, and reversible information.
We observed that the triplewise trade-off relation is tighter
than any pairwise trade-off relations. It implicates that the
conventional wisdom, on the information-disturbance
trade-off, should be rephrased more rigorously into “the
more information is obtained by quantummeasurement, the
more the state is disturbed or less recoverable.” We also
realized quantum measurement that preserves quantum
information in the sense that all the information of a
quantum state is transferred to G, F, and R without any
missing part. In addition, our Letter raises a fundamental
question on the information loss by an inherently non-
optimal quantum measurement, which may provide a deep
insight on the quantum to classical transition and loss of
quantumness as increasing the dimensionality of quantum
measurement [44,45].
While our demonstration is executed based on photonic

qutrits, the results arevalid for arbitrary dimensional systems.
We note that the role of the reversibility R emerges in
multidimensional Hilbert space, while the triplewise trade-
off relation reduces to the information-disturbance relation
when d ¼ 2 [40]. Our results may thus be useful in high-
dimensional quantum information processing [46]. We have
demonstrated different types of optimal quantum measure-
ments. Such measurements can be classified into different
sets according to which trade-off relation they saturate.
Different optimal quantum measurements may suit different
applications. In order to estimate or discriminate quantum
states, an optimal measurement that leads tomaximum infor-
mation gain G with minimal disturbance (i.e., maximum F)
may be required [39]. To transfer or stabilize qubits, e.g., in
quantum teleportation [47] or quantum error correction
[28,48], maximum reversibility R and minimal information
gain G may be desirable as a reversing operation plays an
important role to recover the input information. Imple-
mentingoptimal quantummeasurements in specific quantum
information protocols may be a next step of research.
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