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Stochastic protein accumulation up to some concentration threshold sets the timing of many cellular
physiological processes. Here we obtain the exact distribution of first threshold crossing times of protein
concentration, in either Laplace or time domain, and its associated cumulants: mean, variance, and
skewness. The distribution is asymmetric, and its skewness nonmonotonically varies with the threshold.
We study lysis times of E. coli cells for holin gene mutants of bacteriophage-λ and find a good match with
theory. Mutants requiring higher holin thresholds show more skewed lysis time distributions as predicted.
The theory also predicts a linear relationship between infection delay time and host doubling time for lytic
viruses, that has recently been experimentally observed.
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Molecular biological processes associated with changes
in cell state are controlled by changes in gene expression, a
complex stochastic process involving transcription of a
gene into a ribonucleic acid (RNA) molecule and its
subsequent translation into a protein. Intrinsic noise in
transcription and translation leads to a stochastically vary-
ing abundance of messenger RNA (mRNA) and proteins
within cells, even when genetically identical [1–3].
Experimental studies have directly probed fluctuations of
protein levels across cells [4,5]. Theoretical models assum-
ing specific promoter configurations have solved for the
coefficient of variance CV2 (variance divided by square of
mean) of the mRNA and protein numbers, as well as their
full steady-state distributions [6–10]. Stochastic gene
expression has been shown to be a fundamental property
of living cells, affecting critical physiological processes of
biological and biomedical importance [6,11].
The dynamics of downstream processes governed by the

synthesis of a protein requires its accumulation to some
minimum concentration threshold, e.g., transcription fac-
tors with sigmoidal Hill kinetics [12]. In such cases the
timing of the downstream process is governed by the time
at which the threshold concentration is reached for the first
time, i.e., the First Passage Time (FPT) [13,14] of the
stochastic gene expression process. The most well-studied
example of timing control by stochastic protein accumu-
lation is probably lysis of lambda phage-infected E. coli.
Here the protein holin self-assembles on the bacterial
membrane and punctures it after its concentration crosses
a threshold, causing the cell to ultimately lyse or burst and
release the newly formed viral particles [15,16]. The viral
burst size of lambda phage-infected E. coli is known to

have a broad distribution [17]. While previous work has
studied the timing of lysis and its relation with viral fitness
[16,18,19] and the lysis-lysogeny decision [20], later
studies have highlighted the distribution of lysis timing
and demonstrated connections with the first passage time
[21–24]. Fluctuations in lysis times lead to variations in
viral burst sizes affecting both viral population fitness [25]
as well as the health of the host. Genetic mutations of holin
have been shown to regulate the stochasticity in lysis times
in the λ variants [21,26,27].
First passage timing mechanisms based on protein

accumulation may be quite common, from eukaryotic
organisms to single cells. Recent work suggests that
neuroblast migration timing in C. elegans development
is controlled by the accumulation of mig1 [28]. Cell
division in E. coli has similarly been shown to be controlled
by FtsZ expression [29]. Other examples include cell
survival during prolonged drug exposure [30] and regula-
tion of cell size in yeast cells by cdr2 proteins [31]. First
passage times are also relevant for other phenomena such as
RNA polymerase backtracking and cleavage [32], first
binding of proteins to sites on DNA [33], capture of
kinetochores [34], and more abstractly, estimating charac-
teristics of energy landscapes [35]. Statistics of first passage
times have been of great theoretical interest, and obtaining
analytical expressions for their distribution (FPTD) is
generally quite challenging [36]. In previous work we
derived analytical expressions for the FPTD of the absolute
number of any molecule generated through geometrically
distributed burst kinetics to reach a threshold [37].
However, in living cells the cell volume is never constant,
and for many biological processes the more appropriate
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variable is not the absolute number but the concentration of
proteins. For example, the variation of noise in lysis times
of λ-phage mutants could be explained only assuming a
concentration threshold of holins [27], and the concen-
tration threshold of cdr2 proteins plays a role in the cell
division of budding yeast [31].
Previously only approximate formulae existed for the

moments of the concentration threshold crossing FPTD
[23,27], and the distribution itself was unknown. Here we
derive exact analytical expressions (as well as systematic
approximations) for the FPTD of molecular concentrations
and its moments, and apply them to experimental data on
the distribution of lysis times. In the latter part of this text,
we show that the threshold phenomenon can explain
something out of the box: the experimentally seen linear
relationship between mean lysis time and the doubling time
of the host cell, after an infection.
A theoretical framework for the stochastic kinetics of

protein synthesis has already been developed under the
assumptions of short-lived mRNA and long-lived proteins.
The exact steady-state distributions of the discrete protein
number (n) has been derived previously [8] and was shown
to follow a negative binomial distribution, while the
continuous protein concentration c ¼ n=V (with V being
cellular volume) was shown to follow the Gamma distri-
bution [7,38]. While the forward continuous master equa-
tion was suitable to study the protein concentration c [7],
the corresponding backward master equation [39] is more
convenient for calculating the statistics of the FPT to reach
the threshold concentration X. Given an initial c ¼ x < X,
the survival probability SðX; x; tÞ that c survives reaching
the threshold X through time t, satisfies the backward
continuous master equation:

∂SðX; x; tÞ
∂t ¼ k

Z
X

x
dx0½νðx0 − xÞ − δðx0 − xÞ�SðX; x0; tÞ

− γx
∂SðX; x; tÞ

∂x : ð1Þ

Here the initial condition is SðX; x; 0Þ ¼ 1 and the boun-
dary condition SðX; x ¼ X; tÞ ¼ 0; the rate of protein
production kν is assumed to be proportional to the
mRNA production rate k and the experimentally known
protein burst size distribution νðx − x0Þ ¼ ð1=bÞe−ðx−x0Þ=b
with mean burst concentration b [5,38]. The rate of decay
of the protein per unit concentration is γ which expresses
the joint effect of protein degradation and cell growth. The
FPTD for the first threshold crossing (x ≥ X) in time t is
obtained from SðX; x; tÞ as fðX; x; tÞ ¼ −∂SðX; x; tÞ=∂t.
To solve Eq. (1) we convert the integro-differential equa-
tion into a partial differential equation and take the Laplace
transform, S̃ðX; x; sÞ ¼ R∞

0 dte−stSðX; x; tÞ, leading to a
differential equation for S̃ as a function of the (scaled)
initial concentration x̃ ¼ x=b (details in Sec. S2 of the
Supplemental Material [40]):

x̃
∂2S̃ðX; x̃; sÞ

∂x̃2 þ
�
kþ γ þ s

γ
− x̃

� ∂S̃ðX; x̃; sÞ
∂x̃

−
s
γ
S̃ðX; x̃; sÞ ¼ −

1

γ
: ð2Þ

The homogeneous part of the above equation is a confluent
hypergeometric equation [43]. Using the boundary
condition and the fact that S̃ is finite as x → 0, the solution
in terms of the confluent hypergeometric function

1F1ða; c; x̃Þ [43] is as follows (see Sec. S3 of the
Supplemental Material [40]):

S̃ðX; x; sÞ ¼ 1

s

�
1 − 1F1½sγ ; 1þ kþs

γ ; xb�
1F1½sγ ; 1þ kþs

γ ; Xb�
�
: ð3Þ

Since f̃ðX; x; sÞ ¼ 1 − sS̃ðX; x; sÞ, the desired exact FPTD
in Laplace space for any γ and any initial protein concen-
tration x > 0 is

f̃ðX; x; sÞjγ≠0 ¼ 1F1½sγ ; 1þ kþs
γ ; xb�

1F1½sγ ; 1þ kþs
γ ; Xb�

: ð4Þ

The above calculation (for x > 0) is applicable to the
special case x → 0 of interest, as the initial protein level is
zero at the beginning of the translation. The case of exactly
x ¼ 0 requires a separate treatment, but is numerically
identical to x → 0 as expected (details in Sec. S3 of the
Supplemental Material [40]).
For vanishing decay constant (γ → 0), Eq. (4) simplifies

to f̃ðX; x; sÞ ¼ exp f−½ðX − xÞs=bðkþ sÞ�g which is
analytically invertible and gives the exact FPTD in
the time domain (see Sec. S4 of the Supplemental
Material [40]):

fðX;x;tÞjγ¼0¼e−
ðX−xÞ

b

�
e−kt

X∞
n¼1

ðX−xÞn
n!ðn−1Þ!

�
k
b

�
n
tn−1þδðtÞ

�
:

ð5Þ

Note that for γ ¼ 0 the result is a function of the difference
between the threshold and initial concentrations (X − x), as
expected from the translational symmetry in Eq. (1).
In general for γ ≠ 0, Eq. (4) may be inverted numerically

usingMathematica [44]. Finallywe can also derive the exact
expression of the first few moments, which are useful when
comparing with empirical distributions. From Eq. (4), the
nth moment htni¼ ½∂nf̃ðX;x;sÞ=∂sn�js→0. Defining gðsÞ ¼
1F1½ðs=γÞ; 1þ fðkþ sÞ=γg; ðx=bÞ�, hðsÞ ¼ 1F1½ðs=γÞ; 1þ
fðkþ sÞ=γg; ðX=bÞ�, gðmÞð0Þ ¼ ½∂mgðsÞ=∂sm�js→0 and
hðmÞð0Þ ¼ ½∂mhðsÞ=∂sm�js→0, the first three moments are
derived analytically exactly (see Sec. S5 of the Supplemental
Material [40]):

hti ¼ hð1Þð0Þ − gð1Þð0Þ ð6Þ
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ht2i ¼ 2hð1Þð0Þðhð1Þð0Þ − gð1Þð0ÞÞ þ gð2Þð0Þ − hð2Þð0Þ ð7Þ

ht3i ¼ 6ðhð1Þð0ÞÞ3 þ gð1Þð0Þð3hð2Þð0Þ − 6ðhð1Þð0ÞÞ2Þ
þ 3hð1Þð0Þðgð2Þð0Þ − 2hð2Þð0ÞÞ þ hð3Þð0Þ − gð3Þð0Þ:

ð8Þ

Note that CV2 ¼ ðht2i=hti2Þ − 1 and the skewness ¼
½ðht3i − 3ht2ihti þ 2hti3Þ=ðht2i − hti2Þ3=2� follow from the
above expressions.
Just like the distribution in Eq. (4), the quantities gð1Þð0Þ,

gð2Þð0Þ, gð3Þð0Þ, hð1Þð0Þ, hð2Þð0Þ, and hð3Þð0Þ (see Sec. S5 of
the Supplemental Material [40]) depend on the four
parameters ðx=bÞ, k, γ and (X=b).
Statistics of Lysis Times.—In order to match our results

with experimental data, we used the raw data of Ref. [27].
Briefly, site-directed mutagenesis was used to generate a
library of mutations in the S105 holin allele, each of which
differed from the parent allele by one or two amino acid
substitutions. These mutated sequences were then used to
generate a library of lysogenic lambda phages, each carrying
a slightly different holin gene. These viruses were used to
infect E. coli cells, and lysis was thermally induced and
measured at the single cell level for 91–174 cells per strain.
We estimate some required parameters as follows. Holins

degrade slowly; hence the decay of x is mostly due to cell
growth, with doubling time of roughly 40 min. Hence we
choose γ ¼ lnð2Þ=40 min−1. We choose x=b ¼ 0.01 to
represent x → 0, the vanishingly small initial protein
concentration. Next we numerically eliminate the param-
eter (X=b) between the expressions of CV2 and mean FPT
hti (see discussion in Sec. S7 in the Supplemental Material
[40]), such that the theoretical curve of CV2 versus hti gets
fixed by just one fitting parameter, i.e., k. The best fit
of the theory to the experimental data for the 20 mutants is
shown in Fig. 1, and yields the fitted value k ¼ 4.5 min−1.

The CV2 curve has a minimum at mean FPT around
tm ∼ 40 min.
While we expect the mutants to have roughly the same

(x=b), k, and γ values (as given above), their mean FTP
differs as does the threshold (X=b). We fix (X=b) for every
mutant by matching the theoretical mean from Eq. (6) with
the experimental average from the data, for that mutant.
Then we obtain the full theoretical FPTD [by inverting
Eq. (4) [44] ] and plot against the experimental distribution
to check how well they match. This is shown in Fig. 2 for
two cases—mutant-1 (JD405) and mutant-2 (JD426) (see
Sec. S1 of the Supplemental Material [40] and [27]) with
the mean FPT smaller and larger than tm respectively. See
plots for the remaining 18 mutants in the Supplemental
Material [40] (Fig. 3).
The data and theoretical curves (in Fig. 2) both suggest

that FPTD is non-Gaussian and is skewed to the right. We
explicitly study the variation of the skewness of FPTD for
the mutants in Fig. 3—it shows a nonmonotonic behavior
just like the CV2 with a minimum around ∼35 min close to
tm mentioned above. Thus mutants with increasingly larger
mean FPT have increasingly asymmetric FPTD. Note that
the distributions have asymptotic (large t) exponential tails
∼ expð−t=τcÞ, with characteristic times τc being related to
the smallest pole s� ¼ −1=τc of f̃ðX; x; sÞ in Eq. (4). A plot
of τc=hti against the mean FPT shows a similar non-
monotonic curve as CV2 and skewness (see Sec. S8 in the
Supplemental Material [40]).
Our results lead to an interesting prediction regarding the

dependence of the mean lysis time on the cell doubling
time. We showed above that fluctuations are minimal
around a mean time tm, for a given cellular size doubling
time lnð2Þ=γ. This value tm for any bacterial cell however
may vary, and depends upon experimental conditions
which may change the cell doubling time. From the theory,
we numerically calculate the tm at minimum CV2 and find
it to be linearly dependent on the doubling time lnð2Þ=γ
(see Fig. 4). We also show analytically that tm ≈
−ð1=γÞ lnð1 − fÞ where the fraction f is a ratio between
an “optimal threshold” Xopt and the steady-state concen-
tration css ¼ kb=γ (see Sec. S9 in the Supplemental

FIG. 1. CV2 against hti for 20 mutants (symbols) and exact
theory (solid line) with best fit parameter k ¼ 4.5 min−1. Error
bars are 90% confidence intervals, obtained after bootstrapping
1000 replicates (see Sec. S6 of the Supplemental Material [40]).
Here γ ¼ lnð2Þ=40 min−1 and ðx=bÞ ¼ 0.01.

(a) (b)

FIG. 2. The FPTD from experiment and theory for (a) mutant-1
with hti ¼ 17.1 min and (b) mutant-2 with hti ¼ 140.3 min.
Note tm ∼ 40 min.
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Material [40]). Thus, under the plausible assumption that
wild-type viruses have optimal noise characteristics, the
mean lysis time of lambda phage under different host cell
doubling times should be linearly related with cell doubling
time. Interestingly, for a wide variety of viruses, a linear
correlation between infection delay time and host doubling
time has been reported recently [45].
Approximate FPTD.—Systematic approximations are

useful since often they yield simpler expressions of
practical use. Previous approximations for moments of
the FPTD [23,27,46] were based on ad hoc assumptions.
We develop a systematic approximate theory which
matches the exact results up to second order in fluctuations
as follows. Under the assumption that the burst sizes are
small, the bursty term in Eq. (1) may be smoothed through
the Kramers-Moyal expansion [39] (see Sec. S10 in the
Supplemental Material [40]). Retaining terms up to second
order, we obtain the following backward Fokker-Planck
equation, valid for x < kb=γ:

∂SðX;x;tÞ
∂t ¼ðkb−γxÞ∂SðX;x;tÞ∂x þkb2

∂2SðX;x;tÞ
∂x2 : ð9Þ

The forward Fokker-Planck equation (Sec. S10 in the
Supplemental Material [40]) which is the counterpart of
the above backward Eq. (9), is the corresponding Kramer-
Moyal approximation to the exact theory developed in
Ref. [7]. That forward equation, under Ito convention, is
related to the following Langevin equation [39] (see Sec.
S10 in the Supplemental Material [40] which includes
Ref. [41]):

dc
dt0

¼ kb − γcþ ηðt0Þ ð10Þ

where t0 denotes the forward evolving time, and is to be
distinguished from the “backward” time t. Note ηðt0Þ is a
Gaussian noise with hηðt0Þi ¼ 0 and hηðt01Þηðt02Þi ¼
2Dδðt01 − t02Þ, and the diffusion constant needs to be
identified as D ¼ kb2. The simple Langevin equation with
production, decay, and noise terms has appeared in earlier
theories, e.g., of FPT for mRNA kinetics [47]—yet its exact
FPTD was not known. We note that Eq. (9) corresponding
to the Langevin Eq. (10), can be exactly solved to obtain the
FPTD in Laplace space (see Sec. S11 in the Supplemental
Material [40]):

f̃ðX; x; sÞjapproxγ≠0 ¼
U½ s

2γ ;
1
2
; ðbk−γxÞ

2

2b2γk �
U½ s

2γ ;
1
2
; ðbk−γXÞ

2

2b2γk �
ð11Þ

Here, U denotes Tricomi’s confluent hypergeometric func-
tion related to 1F1 (see Sec. S11 in the Supplemental
Material [40]). From Eq. (11) the theoretical CV2 and
skewness may be obtained just as we did for the exact
theory [Eq. (4)]—see Sec. S12 of the Supplemental
Material [40] which includes Ref. [42].
The curves of CV2 and skewness from the approximate

FPTD [Eq. (11)] are plotted in Fig. 5 along with those from
the exact theory [using Eqs. (7), (8)], and the ones from the
Langevin simulations obtained using Eq. (10). The exact
theory matches the approximate theory and simulations for
CV2 perfectly, but deviates a bit from those in the case of
skewness, which is expected since in the Kramers-Moyal
approximation we ignored third order moments which
contribute to the skewness.
We derived analytically exact results for the FPTD for

protein concentrations by solving the backward master
equation. We showed that the FPTD and its moments match
those observed for lysis times in lambda phage, reinforcing
the hypothesis that the lysis time is governed by a protein
accumulation-dependent FPTD.We developed a systematic
approximation for the FPTD and derived analytical results
for the approximate FPTD. The results are general and can
be applied to fit lysis time distributions for all lytic phages
including lambda phage, as well as other protein threshold
crossing processes. The distributions themselves are non-
Gaussian with exponential tails and may have a high

FIG. 4. Optimal mean FPT versus cell doubling time. As
discussed in the text, the slope of the green line is equal to
− lnð1 − fÞ= lnð2Þ with f ¼ 0.55.

FIG. 3. Skewness against hti for 20 mutants (symbols) and
exact theory (solid line) with k ¼ 4.5 min−1, x=b ¼ 0.01, and
γ ¼ lnð2Þ=40 min−1. Error bars are determined in a similar way
as in Fig. 1.
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skewness, indicating asymmetry that may be significant for
some lytic phages. Our predictions may be checked using
Gillespie simulations of protein numbers divided by time
varying cellular volume [7] or using more exact time-
dependent rates [48,49].
We showed that the FPT theory predicts that some

mutants will have optimal noise characteristics, i.e., min-
imal CVand skewness, which is borne out by the data. The
nonmonotonic relation between lysis time and noise
suggests that lysis time may be selected during evolution
to minimize noise, as suggested by the observation that the
wild-type lambda phage has the lowest level of noise in
lysis times [24].
We also predicted an interesting linear relationship

between the optimal mean lysis time and the host cell
doubling time. This result may be quite general for lytic
viruses, since viral escape from an infected cell is typically
characterized by a delay that could be a sign of a threshold
phenomena. It is thus intriguing that for a wide variety of
viruses, the initial burst timing is linearly correlated with
the cell doubling time [45] across many different types of
hosts and lysis times ranging from minutes to a week. Lytic
phages are also important in phage therapy, where bacter-
iophages are used to kill pathogenic bacteria [50], and these
results on lysis timing may have useful applications for that
novel area of medicine.
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