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Turbulent vortex structures emerging in bacterial active fluids can be organized into regular vortex
lattices by weak geometrical constraints such as obstacles. Here we show, using a continuum-theoretical
approach, that the formation and destruction of these patterns exhibit features of a continuous second-order
equilibrium phase transition, including long-range correlations, divergent susceptibility, and critical
slowing down. The emerging vorticity field can be mapped onto a two-dimensional (2D) Ising model with
antiferromagnetic nearest-neighbor interactions by coarse graining. The resulting effective temperature is
found to be proportional to the strength of the nonlinear advection in the continuum model.
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Introduction.—The nature of transitions between quali-
tatively different collective states of nonequilibrium matter
continues to be an open question in many areas of physics
and related fields. In classical pattern formation and fluid
dynamics, the transition from regular waves and patterns to
irregular chaotic or turbulent states has been explored in
many different areas ranging from pattern formation in
reaction-diffusion and fluid systems to the onset of turbu-
lent flows. In many of these systems the replacement of
periodic patterns was found to be linked to instabilities of
the regular structures. Prominent examples are different
types of waves in extended oscillatory systems [1] or spirals
[2,3] and Turing patterns [4] in reaction-diffusion systems.
For the classical problem of the transition from laminar to
turbulent pipe flow this approach cannot be applied, since
the laminar flow is stable for arbitrarily large Reynolds
numbers. Recent large-scale experimental and numerical
studies in pipe flows [5–7] have instead revealed that the
transition bears analogies with a nonequilibrium phase
transition in the directed percolation class [8], where
the laminar flow corresponds to an absorbing state.
Transitions to turbulence in other macroscopic flow sys-
tems such as Couette flow [9], channel flow [10] or
turbulent liquid crystals [11] are exhibiting similar features.
In addition, theoretical studies on other nonequilibrium
systems such as coupled chaotic maps have shown that
equilibriumlike transitions can occur on larger scales even
if the underlying dynamics is deterministic and highly
irreversible [12–15].
Here, we focus on nonequilibrium transitions appearing

in active matter, the latter representing a new central field of
physics showing intriguing forms of collective motion [16–
24]. In particular, active matter can also display turbulent-
like behavior [25]. Remarkably, a recent simulation study
[26] of the onset of turbulence in an active nematic has

yielded striking analogies to directed percolation. In the
present work, we consider, as a key example, the transition
between regular vortex patterns [27–29] and mesoscale
turbulence [30,31] that has been found experimentally in
active (bacterial) suspensions such as Bacillus Subtilis
and colloidal (e.g., Janus-particle) systems [32]. Mesoscale
(or low-Reynolds number) turbulence implies a highly
dynamical flow field with spiral-like structures, i.e., vor-
tices, that are characterized by a preferred length scale [33].
Exposing such a suspension to geometrical confinement
[34–36], one may observe regular vortex lattices where
both the vortex centers and their direction of rotation is
ordered. A striking example occurs in 2D systems of
connected chambers [27–29] where neighboring vortices
exhibit the same (ferromagnetic) or the opposite spinning
direction (antiferromagnetic), resembling a nonequilibrium
magnetic spin lattice. Intriguingly, however, ordered vortex
patterns can also emerge in the presence of small obstacles
[35,37–39] and even spontaneously [40–42]. The question
then is: How does the vortex pattern arise (or dissolve) from
the turbulent state?
In this work we apply a continuum-theoretical approach

to investigate an active suspension subject to a square
lattice of obstacles with a lattice constant comparable to the
intrinsic length scale in the unconfined system. Previous
research has shown that such an “external field” can
stabilize antiferromagnetic vortex patterns under conditions
where the unconstrained system exhibits turbulence [37],
with quantitative agreement between continuum theory and
experiment [39]. A key parameter is the strength of non-
linear advection, λ, that crucially depends on the stresses
generated by the swimming force and the self-propulsion
speed [33,43], which can be tuned, e.g., by changing the
oxygen concentration in experiments [44]. To explore the
nature of the transition in the obstacle system, we describe
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the ordered state as a magnetic spin lattice. We explicitly
include the possibility of a disordered (turbulent) state,
going beyond earlier work using the spin picture. Because
the vortices in our system are spatially “pinned,” the present
transition is different from that considered in Refs. [40,41],
which focuses on the melting of a spontaneously formed
vortex crystal appearing at extreme λ. Our results provide
strong evidence that the nonequilibrium order-disorder
transition can be described as a second-order transition
with critical exponents consistent with the 2D Ising
universality class, and λ playing the role of an effective
temperature.
Model.—We use a well-established minimal model for

dense microswimmer suspensions [40,42,43,45,46], where
density fluctuations can be neglected [47–49] and the
dynamics is described on a coarse-grained (order param-
eter) level via an effective microswimmer velocity field v
[43]. Because of this effective description and the quasi-2D
system (where boundaries can act as momentum sinks),
momentum is not conserved. We choose this model over
different models with momentum conservation or varying
density that have been shown to exhibit similar pattern
formation [38,50,51], because it can be derived from
microscopic dynamics [43] and has been shown to capture
experiments on bacteria in the absence [30] as well as in
the presence of obstacle lattices [39]. The dynamics of v is
given by

∂tvþ λv ·∇v¼−
δF
δv

;

F ¼
Z

dx

�
q∇ ·v−

a
2
jvj2þb

4
jvj4þ1

2
jð1þ∇2Þvj2

�
: ð1Þ

The dynamics is characterized by the competition between
nonlinear advection (λv ·∇v) and relaxation governed by
the functional F . For sufficiently high activity, 0 < a < 1,
the minimum of F is a vortex pattern with square lattice
symmetry characterized by two perpendicular modes with
characteristic wavelength Λ ¼ 2π (see Refs. [40,42] and
Supplemental Material [52] for details, which includes
Refs. [53–61]). For λ > λ⋆, the nonlinear advection term
destabilizes this nonfluctuating “ground state” and induces
a dynamical state denoted as mesoscale turbulence
[30,33,40,43,45,62]. Strikingly, recent experiments [37]
and numerical calculations [39] have consistently shown
that periodic arrangements of small obstacles can stabilize
regular patterns for intermediate values of λ≳ λ⋆.
Setup.—To investigate the transition to a disordered

state, i.e., the breakdown of global order for larger values
of λ, we analyze the dynamics in a 2D periodic system
containing N ¼ nx × ny obstacles of diameter l ¼ 0.13Λ
arranged in a square pattern with lattice constant L ¼ ffiffiffi

2
p

Λ,
see Fig. 1. This conforms with the ground state symmetries
and corresponds to the optimal spacing in the sense that it
fits to its characteristic scale Λ [39]. The results are robust

(a) (b) (e)

(c) (f)

(d) (g)

FIG. 1. Snapshots of the vorticity field ω in a system of size N ¼ 16 × 16 obstacles at (a) λ ¼ 9.4 (near the critical point), (b) λ ¼ 6,
(c) λ ¼ 8, and at (d) λ ¼ 10. The arrows in (a) denote the velocity field v and the black circles denote the locations of the obstacles. Gray
lines indicate the grid used to calculate spin values. The instantaneous spin lattices shown in (e)–(g) (red for positive, blue for negative
spins) are obtained from the vorticity fields in (b)–(d).
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with respect to changes of the setup that preserve the
general symmetry, e.g., changing l or L or adding defects
by removing a few obstacles randomly, see Supplemental
Material [52]. Our study here is confined to the case of
square vortex lattices since they have been found to be
stable for the case of vanishing nonlinear advection, λ ¼ 0,
whereas vortex lattices with different symmetry, e.g.,
triangular arrangements [39], are unstable already for
λ ¼ 0. Hence, the square vortex lattice is the only known
example that represents a true minimum of the functionalF
and as such may be interpreted as the ground state of the
system with λ < λ⋆. We numerically solve Eq. (1) using a
pseudospectral method and implement the obstacles via a
local damping potential for both, velocity v and vorticity
ω ¼ ð∇ × vÞz (see Supplemental Material [52] and
Ref. [39] for more details). We use system sizes of
N ¼ 16 × 16, N ¼ 32 × 32, and N ¼ 64 × 64 and set
a ¼ 0.5, b ¼ 1.6 as in Ref. [39]. To characterize the vortex
patterns, we divide the system into a quadratic grid with
obstacles occupying the nodes and grid cells numbered by
their position in the x and y directions, i.e., i ¼ 1…nx and
j ¼ 1…ny, respectively. We calculate the mean vorticity
Ωi;j in every grid cell via integration of the vorticity field
ωðx; yÞ ¼ ½∇ × vðx; yÞ�z,

Ωi;j ¼
1

ΔxΔy

Z ðiþ0.5ÞΔx

ði−0.5ÞΔx

Z ðjþ0.5ÞΔy

ðj−0.5ÞΔy
ωðx; yÞdxdy; ð2Þ

where Δx and Δy are the dimensions of the cells.
Normalization yields a system of discrete spins Si;j ¼
Ωi;j=jΩi;jj with Si;j ¼ �1. Using continuous spins Ωi;j

(thus retaining the magnitude of the vorticity) instead of
Si;j does not change the nature of the transition, see
Supplemental Material [52].
Antiferromagnetic order.—In analogy to antiferromag-

netic spin models, we divide the system into two sublattices
(denoted by þ and −) and calculate averages for these
sublattices separately. The spatial average of the sublattice
spins yields a quantity analogous to a sublattice magneti-
zation per lattice site m�, i.e.,

m� ¼ 1

N

Xnx
i¼1

Xny
j¼1

ð1� ð−1ÞðiþjÞÞSi;j: ð3Þ

The degree of antiferromagnetic order is measured by the
order parameter Φ ¼ jhmþi − hm−ij=2, where h…i
denotes the temporal average. In Fig. 2(a), Φ is plotted
as a function of nonlinear advection strength λ. The data
indicate a continuous transition from antiferromagnetic
order (Φ ¼ 1) at lower values of λ to disorder (Φ ≈ 0)
upon increase of λ, see also Figs. 1(b)–1(d). The overall
behavior is reminiscent of a second-order phase transition.
To locate the critical point occuring at some critical
value λc, we calculate the Binder cumulants, defined via

U� ¼ 1 − hm4
�i=ð3hm2

�i2Þ for the two sublattices, respec-
tively [63]. Figure 2(b) shows the average over the
sublattices, U ¼ ðUþ þ U−Þ=2, as a function of λ for
lattices of different size N. At the critical point, the
Binder cumulant related to an equilibrium system is known
to become independent of N, i.e., the curves intersect [63].
The clear intersection point visible in Fig. 2(b) implies that
we can utilize this method in the present case as well,
yielding λc ≈ 9.4. Moreover, when plotting Φ as a function
of the distance to the critical point jλ − λcj, see Fig. 2(c), we
observe power-law behavior, i.e., Φ ∝ jλ − λcjβ, with an
exponent β ¼ 1=8. This conforms with Onsager’s exact
solution for the magnetization of the 2D Ising model with
nearest-neighbor interactions [64],

hmi ¼ f1 − sinh−4½2JðkBTÞ−1�g1
8; ð4Þ

with ðkBTÞ−1 and J representing the inverse thermal energy
and interaction strength, respectively. Because of the

FIG. 2. (a) Antiferromagnetic order parameter Φ as a function
of λ for differentN. Solid black line: Onsager’s analytical solution
as a function of effective temperature TeffðλÞ (shown as the
second x axis). Inset: TeffðλÞ. (b) Binder cumulantU as a function
of λ. The intersection point of the curves for differentN marks the
critical point λc ≈ 9.4, here denoted by the dotted line. (c) Φ as a
function of jλ − λcj. Power-law behavior with exponent β ¼ 1=8
is shown as a dashed line. The error bars represent the standard
error.
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bipartite nature of the square lattice, ferro- or antiferro-
magnetic interactions lead to the same general behavior (in
the absence of an external field); hmi thus corresponds to
our antiferromagnetic order parameter Φ.
Correlation function.—To further characterize the

second-order transition apparent from the order parameter,
we consider the 2D spatial correlation function

Cðn;mÞ ¼ 2

N

�Xnx
i

Xny
j

Si;jSiþn;jþm

�
; ð5Þ

where n and m are integer steps. In an antiferromagnetic
lattice, the full 2D correlation corresponds to a chessboard
pattern, see Supplemental Material [52]. For our purposes,
it is sufficient to look at the diagonal (n ¼ m) correlation
function CdiagðrÞ, which is only a function of distance,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2

p
. In Fig. 3, CdiagðrÞ is plotted in a log-log

scale at different values of λ for the largest system size of
64 × 64 vortices. The correlation function decays expo-
nentially to zero for λ > λc, whereas for λ < λc, it reaches a
finite value C0 ¼ hm�i2. We fit the correlation function via
CdiagðrÞ − C0 ¼ ACr2−d−ηe−r=ξ [65,66], where ξ is the
correlation length, AC is an additional fitting parameter,
and d ¼ 2 the dimension of the system. At λc ≈ 9.4, we
observe power-law behavior with an exponent η ≈ 1=4,
which is shown as a solid line in Fig 3. The correlation
length ξ is shown as an inset, indicating divergent behavior.
The statistics of ξ does not allow to extract reliably a critical
exponent; this would require an extensive finite-size scaling
analysis which is outside the scope of the present study.
Still, the overall behavior of CdiagðrÞ, particularly the
exponent η ¼ 1=4, is reminiscent of a second-order

transition in the universality class of the 2D Ising model
with nearest-neighbor interactions [65]. This picture is
further supported by data of the susceptibility below λc
(see Supplemental Material [52]), showing power-law
behavior with exponent γ ¼ 7=4. Further, as expected
close to a second-order transition, we observe critical
slowing down, i.e., a profound increase of the extent of
temporal correlations of ΦðtÞ upon approaching λc (see
Supplemental Material [52]).
Effective temperature.—Given the “Ising-like” behavior

of the order parameter (and the other quantities studied
here) as functions of the strength of nonlinear advection, λ,
it is an intriguing question whether we can relate λ to an
effective temperature Teff of our nonequilibrium system. As
a starting point, we set Teff equal to kBT=J entering Eq. (4),
solve this equation with respect to Teff and take the
numerical result for ΦðλÞ (see Fig. 2) to calculate Teff as
a function of λ. Clearly, this can only be done in the range
Φ ≠ 0, i.e., λ < λc. The result is shown in the inset of
Fig. 2(a). Remarkably, in the range of λ values where spin
fluctuations occur (λ > 5), we find a linear dependence
between Teff and λ, specifically TeffðλÞ ≈ 0.313ðλ − 2.05Þ,
suggesting that we can indeed consider λ as an effective
temperature (up to some shift). This correspondence is
shown in Fig. 2(a) by the second x axis. Note that the
deviation from Onsager’s analytical solution above the
critical temperature is expected due to the finite system
size. From the relation TeffðλÞ, it follows that absolute zero,
i.e., Teff ¼ 0, corresponds to λ⋆ ¼ 2.05. Remarkably, this
value coincides with λ⋆ ≈ 2, above which the square lattice
ground state in the unconstrained system becomes unstable
to the formation of a dynamic, mesoscale-turbulent state. A
further intriguing consequence of the linearity Teff ∝ λ
appears when we relate λ to microscopic parameters (see
Supplemental Material [52]), particular the self-swimming
speed v0 that is experimentally tunable [44]. In fact, we find
Teff ∝ λ ∝ v0, in contrast to studies of spherical active
particles where Teff ∝ D ∝ v20 [17,67] (with D being the
diffusion constant). We further note that the existence of a
linear relation TeffðλÞ is robust against details of the setup,
which only lead to changes of the quantitative mapping
λ → Teff . The scenarios tested include varying obstacle size
l and lattice constant L as well as introducing a small
amount of disorder into the system by randomly removing
a few obstacles, see Supplemental Material [52]. For
example, changing l ¼ 0.13Λ to l ¼ 0.11Λ yields
TeffðλÞ ≈ 0.46ðλ − 2.08Þ.
Conclusions.—While antiferromagnetic vortex structures

in active fluids are now well established [27–29,39], the
present study substantially broadens the picture: By con-
sidering the strength of nonlinear advection λ as a tunable
parameter, we found that the vortex lattice transforms via a
second-order phase transition with Ising-like characteristics
into a disordered state, namely, mesoscale turbulence. At
the critical point, the range of spin-spin correlations

FIG. 3. Diagonal correlation function CdiagðrÞ for different λ.
Below and above λc ≈ 9.4, CdiagðrÞ decays exponentially to zero
or C0 ¼ hm�i2, respectively. At λc, we observe power-law
behavior with an exponent η ≈ 1=4 (slope shown as solid black
line). Inset: correlation length ξ as a function of λ.
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(i.e., correlations between vortex rotation) diverges, indicat-
ing pattern formation on much larger scales. Our analysis
moreover reveals the presence of an effective temperature
directly proportional to λ, quite different from earlier studies
of nonequilibrium systems, where effective temperatures
have been defined [68–72]. From a more general perspec-
tive, our study complements recent attempts to relate
complex nonequilibrium transitions to (standard) models
from statistical physics, other prominent examples being the
onset of turbulence in inertial fluids [9] and active nematics
[26] viewed as directed percolation.We note that, apart from
a different geometry, here we also focused on a different
order parameter. Clearly, further work is necessary to
elucidate such connections and their practical relevance
for the engineering of active and biological fluids.
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