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The effective interactions between the constituents of driven soft matter generically defy Newton’s third
law. Combining theory and numerical simulations, we establish that six classes of mechanics with no
counterparts in equilibrium systems emerge in elastic crystals challenged by nonreciprocal interactions.
Going beyond linear deformations, we reveal that interactions violating Newton’s third law generically turn
otherwise quiescent dislocations into motile singularities which steadily glide though periodic lattices.
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The constituents of driven soft matter interact via
effective forces which are generically nonreciprocal.
These constituents escape the elementary constraints
imposed by Newton’s third law by constantly exchanging
linear and angular momentum with their surrounding
medium. Hydrodynamic interactions provide a paradig-
matic example of such nonreciprocal interactions [1]. Take
the minimal system involving two identical colloidal
particles A and B sedimenting in a viscous fluid, the drag
force acting on B due to the motion of A is never opposite to
the drag force acting on A due to the motion of B, whatever
the relative position of the two particles, see Fig. 1(a). In a
colloidal suspension these nonreciprocal interactions result
in complex chaotic trajectories at odds with the homo-
geneous and steady nature of the global drive [2,3]. As
illustrated in Figs. 1(a)–1(d), the violation of Newton’s
third law is not specific to sedimentation but applies to
systems as diverse as colloidal spinners [4–7], driven
emulsions [8–10], and swimmer suspensions [11].
Beyond the specifics of fluid mechanics, nonreciprocal
couplings rule systems as diverse as self-phoretic colloids
[12–14], programmable matter [15,16], dirty plasmas [17],
groups of living creatures [18–20], and motile agents
[21–23]. Despite a surge of recent efforts, see, e.g.,
Refs. [16,24–29], the basic principles relating the violation
of Newton’s third law at the microscopic level to the phase
behavior, and mechanics of driven soft matter remains
elusive and limited to specific realizations.
In this Letter, we investigate the mechanics of crystals

assembled from (self-)driven units defying Newton’s third
law. We lay out a comprehensive description of their elastic
responses, by classifying nonreciprocal microscopic inter-
actions in termof their symmetry under parity transformation.
Building on this framework, we then combine theory and
simulations to show that driven lattices generically feature a
macroscopic response that defies our intuition based on solid
mechanics, and host self-propelled dislocations.

Let us consider the overdamped dynamics of a collection
of N identical point particles in a homogeneous medium.
The particles, located at positions RνðtÞ, are supposed to
interact via pairwise-interaction forces balanced by a local
frictional drag −ζ _RνðtÞ. Their equations of motion reduce
to the generic form [36]

ζ _Rν ¼
X
μ≠ν

FðRμ −RνÞ; ð1Þ

when ignoring the possible nonlinear interplay between
local drag and structural deformations [37,38]. In all that
follows, we set ζ ¼ 1 without loss of generality. Having
ignored the many degrees of freedom of the medium
hosting the N particles, we stress that the effective force
F is not constrained to derive from any interaction potential
(or free energy). It includes all effective couplings mediated
by the soft matrix surrounding the particles. For instance,
F can reflect the hydrodynamic, or phoretic, interactions
experienced by particles driven in a viscous fluid [1,11,13],
or the elastic forces acting on active inclusions deforming
an elastic solid [39–42]. Beyond the specifics of these
examples, the N particles can continuously exchange
linear and angular momentum with their surround-
ing environment, thereby alleviating the constraints
imposed by Newton’s third law. In general, we have
(i) FðRμ −RνÞ ≠ −FðRν −RμÞ and (ii) R × FðRÞ ≠ 0.
We henceforth refer to forces obeying (i) or (ii) as
nonreciprocal forces. To investigate the consequences of
force nonreciprocity, we decompose F on its symmetric
and antisymmetric components under parity transforma-
tion: FðRÞ ¼ FAðRÞ þ FSðRÞ, where the parity-
symmetric interactions [FSð−RÞ ¼ FSðRÞ] contribute to
linear momentum exchange with the surrounding medium,
while the parity-antisymmetric interactions [FAð−RÞ ¼
−FAðRÞ] reflect orbital momentum exchange. To gain
some intuition, we show two prototypical examples of
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parity-symmetric interactions in Figs. 1(a) and 1(b), and
contrast them with two classical examples of antisymmetric
hydrodynamic interactions in Figs. 1(c) and 1(d).
We first note that all Bravais lattices correspond to a

stationary solution of Eq. (1). Translational invariance
indeed implies that nonreciprocal forces result in a
homogeneous translation of the lattice at a speed
V0 ¼

P
μ≠0 FSðRμ

0Þ, where Rμ
0 are the positions in the

crystal centered on R0
0 ¼ 0.

However, nonreciprocal forces typically amplify micro-
scopic fluctuations and destabilize 2D crystalline order. To
see this, we address the linear stability of the crystal by
considering plane-wave displacements uðq; tÞe−iq·Rν

0 . They
satisfy

_uðq; tÞ ¼ ðMA þ iMSÞ · uðq; tÞ ð2Þ

where the real matrices MA and MS, respectively, depend
on ∇FA and ∇FS. As thoroughly discussed in
Supplemental Material (SM) [30], we first note that the
two eigenvalues of iMS cannot be both real and negative:
phonons cannot be overdamped. Parity-symmetric forces
can, however, power the free propagation of sound waves
as experimentally observed in driven microfluidic crystals
interacting via the symmetric forces sketched in Fig. 1(b),
see [8–10]. The case of parity-antisymmetric forces is more
subtle. However, in a host of experimentally relevant
situations, these forces are divergenceless, such as hydro-
dynamic interactions induced by potential flows, phoretic
interactions [12,14], and transverse frictional forces
[7,28,43]. The condition ∇ · FA ¼ 0 implies trðMAÞ ¼ 0.
The eigenvalues of MA are then either opposite and real or
pure imaginary numbers. Therefore, FA either destabilizes
2D crystals or powers the propagation of free phonons, in
agreement with the phenomenology reported in colloidal
spinner crystals [7,28,43]. In sum, regardless of their
microscopic origin, nonreciprocal forces are typically
unable to self-organize identical units into a stable crystal
state.

To understand how nonreciprocal forces modify the
mechanics of elastic crystals, it is useful to classify the
interactions with respect to their angular symmetries. In all
that follows we consider a generic class of forces which we
decompose in a multipolar expansion as

FðR ¼ reiθÞ ¼
X
n

fnðrÞeiðnθ−αnÞ; ð3Þ

where we use the complex-number representation for the
2D vectors. Forces are parity-symmetric when n is even,
and antisymmetric when n is odd. Given this simple
decomposition Newton’s third law would reduce the sum
in Eq. (3) to its sole n ¼ 1 mode, and imply α1 ¼ 0. At
lowest orders, nonreciprocal interactions correspond to
forces with n ¼ 1, α1 ¼ π=2, and n ¼ 2. They are realized
by two paradigmatic examples of driven soft matter. The
parity-odd case n ¼ 1, α1 ¼ π=2, corresponds to the forces
experienced by collections of active or driven spinners
interacting either by near-, or far-field hydrodynamic
interactions in a viscous fluid, see Fig. 1(c) and, e.g.,
Refs. [4–6,44–46]. Similarly, the parity-even case n ¼ 2
corresponds to the standard dipolar flows ruling the
interactions between foams, emulsions, or colloids uni-
formly driven in shallow channels, see Fig. 1(b) and, e.g.,
Refs. [8,47–49].
We focus here on perfect hexagonal lattices, and com-

pute the stresses σ and body forces F resulting from linear
deformations. In line with our intuition based on equilib-
rium solids, we show below that parity-odd interactions
convert deformations into stresses. However, parity-even
forces do not cancel one another. As a result, deformations
generically produce net forces.
Without loss of generality we define the real space

displacement field uðrÞ, and decompose the deformations
tensor Dij ¼ ∂ui=∂xj, on the basis defined by the pure
dilation (τδij), rotation (τ

ω
ij), and two orthogonal shear modes

(τs1ij and τs2ij ): Dij ¼ Dδτ
δ
ij þDωτ

ω
ij þDs1τ

s1
ij þDs2τ

s2
ij [see

Fig. 2(b)].

(a) (b) (c) (d)

FIG. 1. Hydrodynamic interactions do not obey Newton’s third law. We give four examples of nonreciprocal forces between pairs of
identical particles driven in a viscous fluid. Parity-symmetric forces (green arrows) correspond to equal drag forces acting on the
particles. (a) Two identical particles sedimenting in a viscous fluid. The interaction force field decomposes on the n ¼ 0, 2 modes of
Eq. (3). (b) Two particles advected in a shallow microfluidic channel interact hydrodynamically via the sole n ¼ 2 mode. Parity-
antisymmetric forces (red arrows) correspond to opposite drag forces acting on the particles. (c) Two particles spinning in a viscous fluid
interact via transverse forces (n ¼ 1 mode only). (d) When swimming in the same direction two so-called squirmers interact
hydrodynamically via the superposition of forces with n ¼ −1, 1, and 3 angular modes [30].

PHYSICAL REVIEW LETTERS 128, 048002 (2022)

048002-2



Parity even interactions.—To illustrate the counterintui-
tive mechanics induced by parity even forces, we first focus
on the minimal example of interactions having a dipolar
symmetry [n ¼ 2, see Fig. 1(b)]. Computing the force F
acting on a test particle in a deformed hexagonal lattice, we
find that the force components (F i) depend linearly on
deformation (Dij):

F ¼ K2

�
cos α2 sin α2
− sin α2 cos α2

��
Ds1

Ds2

�
; ð4Þ

where K2 ¼
P

μ≠0 ½f2ðRμ
0Þ þ Rμ

0f
0
2ðRμ

0Þ=2�. The conse-
quences of Eq. (4) are clear. Having in mind a colloidal
crystal driven in a 2D fluid, say in the x direction (leading
to α2 ¼ 0), longitudinal shear deformations (Ds1) accel-
erate or slow down translational motion whereas shearing
the lattice at a 45° angle (Ds2) results in a net drift in the
direction transverse to the applied drive. Rotation and
dilation do not yield any net force. We emphasize that
this atypical response relating strain to body forces is linear
but not invertible. It therefore violates any form of macro-
scopic reciprocity [16,24]. Uniform deformations cause net
uniform forces, but applying a homogeneous force merely
translates the crystal leaving its inner structure unaltered.
The emergence of net body forces from crystal deforma-
tions is not specific to dipolar interactions, but generically
emerges from nonreciprocal forces even under parity

transformations. In Fig. 2(c), we show the only three
possible constitutive relations in crystals enjoying a sixfold
symmetry defined by the response matrix A: F i ¼ F 0

i þ
AiβDβ where the implicit summation (β index) is done over
the four deformation modes.
Parity-odd forces.—The case of parity-odd forces is

more familiar. Let us start again with a simple example,
when the microscopic forces are isotropic [n ¼ 1, α1 ≠ 0,
see Fig. 1(c)], our hexagonal lattice realizes a typical
example of an odd-elastic solid introduced in Ref. [28]
and exemplified in Ref. [7]. Deformations do not yield
body force but build up a net stress which we can readily
compute using the Irving-Kirkwood formula [50–52],

σij ¼
1

V

X
μ≠0

Rν
i FjðRμÞ; ð5Þ

where the summation excludes the particle at the origin and
V is the volume of the unit cell. Decomposing the stress on
the dilation, rotation, and two shear modes ðσδ; σω; σs1 ; σs2Þ
we then find the constitutive relation

0
BBBBB@

σδ

σω

σs1
σs2

1
CCCCCA

¼

0
BBBBB@

Pδ

Tω

0

0

1
CCCCCA

þ

0
BBBBB@

B 0 0 0

A 0 0 0

0 0 μ Ko

0 0 −Ko μ

1
CCCCCA

0
BBBBB@

Dδ

Dω

Ds1

Ds2

1
CCCCCA
; ð6Þ

(a) (b) (c)

FIG. 2. Mechanics of elastic lattices challenged by nonreciprocal interactions. (a) When a hexagonal lattice undergoes a deformation,
parity-antisymmetric forces induce a stress σ (red) that can be computed using the Irving-Kirkwood formula [Eq. (5)]. The macroscopic
response to a deformationD reads σα ¼ Πα þ KαβDβ where α, β denote the elementary stress and deformation modes defined in (b) and
Π is a so-called prestress supported by the crystal even in absence of any deformations. In the case of parity-symmetric interactions, a
deformation D induces a net force F defined as the net force experienced by any test particle (green arrow). F and D are related by the
linear yet noninvertible relation F i ¼ F 0

i þ AiβDβ where i ¼ x, y. The six possible structures for the matrices K and A are given in (c).
(b) Elementary modes of 2D deformations (and stresses). τδ corresponds to a dilation (isotropic pressure), τω to a rotation (torque), while
τs1 and τs2 are the two pure-shear deformations (shear stresses). (c) On a hexagonal lattice, parity-antisymmetric interactions define three
classes of stress-strain relations. These constitutive relations are determined by the angular symmetry of the interactions (n≡ 1; 3; 5½6�
where “[6]” stands for “modulo 6”), see Eq. (3). The prestresses Π are given: Π ¼ ðPδ; Tω; 0; 0Þ when n≡ 1½6�, Π ¼ 0 when n≡ 3½6�,
and Π ¼ ð0; 0; S1; S2Þ when n≡ 5½6�. Parity-symmetric interactions define three classes of force-strain relations determined by the
angular symmetry of the interactions (n≡ 2; 4; 0½6�). The three possible constitutive relations correspond to the three possible structures
of the matrix A. A net force F 0

i can exist even in the absence of deformation under the action of nonreciprocal interactions when
n≡ 0½6�, it is given by F 0

i ¼ ðc1; c2Þ ≠ 0. The analytic expression of all material parameters are expressed in terms of the microscopic
interactions both for parity-antisymmetric and symmetric forces in the SM [30].
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where the analytic expressions of all material parameters
are presented in SM [30] together with an alternative
geometrical derivation of σ. Two comments are in order.
First, the undeformed crystal can support both a nonzero
pressure Pδ and a nonzero odd stress Tω, viz., a net torque
density resulting from the angular momentum exchange
with the surrounding medium. This result confirms early
phenomenological theories, simulations, and recent experi-
ments conducted on colloidal and granular spinners [6,53–
55]. Second, we find that the bulk and shear moduli (B and
μ) both vanish for purely transverse forces (α1 ¼ π=2),
whereas odd elasticity (coefficients A and Ko) emerges
when α1 ≠ 0. Remarkably, in hexagonal lattices all micro-
scopic interactions satisfying n≡ 1 (mod 6) yield the same
macroscopic elastic response, which expands the existence
of odd elastic solids beyond the specifics of purely trans-
verse forces. More generally, we summarize our results
obtained for all odd n in Fig. 2(c), and show the only three
possible affine constitutive relations of nonreciprocal hex-
agonal crystals. When jnj ≥ 3 elasticity is not isotropic
anymore, even in hexagonal lattices. We also note that
when n≡ 5 (mod 6) undeformed lattices support a net
shear stress ðσs1 ; σs2Þ ¼ ðS1; S2Þmirroring the odd stress of
chiral crystals [6,54,55].
Our continuum mechanics picture provides an effective

platform to go beyond linear deformations, and address the

impact of dislocations on the crystal structure and dynam-
ics. To gain some insight, we first solve Eq. (1) numerically
using periodic boundary conditions, for a hexagonal
lattice deformed by two maximally separated dislocations
of opposite Burgers vector (periodic boundary conditions
require a zero net topological charge). The numerical
methods are detailed in SM [30]. We investigate sepa-
rately the impact of each angular mode. Remarkably,
Supplemental Material, Video 1 [30] reveals that the
competition between nonreciprocal forces and elasti-
city turns dislocations into self-propelled singularities.
Figure 3(b) illustrates the gliding motion of dislocations
powered by dipolar (n ¼ 2) interactions.
To explain this spontaneous motion in the direction of

the Burgers vector b, we consider an isolated dislocation at
the origin of an isotropic elastic solid [B ≠ 0 and μ ≠ 0 in
Eq. (6)]. In the case of parity-odd forces, the induced
internal extra stress Π, see Fig. 2, results in a net
Peach-Koehler force FPK

i ¼ ϵijΠkjbk, computed in SM
[30]. When b ¼ be1, the glide component of the force
takes a compact form when n≡ 1, 5 (mod 6):

FPK
glideðn ¼ 1Þ ¼ −Tωb; FPK

glideðn ¼ 5Þ ¼ S2b: ð7Þ

The case n ¼ 3 deserves a separate study [30], which
accounts for the local rotation of the crystal orientation.

(a)

(c) (e)

(b) (d)

FIG. 3. Nonreciprocal interactions power dislocation glide. In our numerical simulations [30], we choose the nonreciprocal
interactions to correspond to pure multipoles. When n ≥ 2, fnðrÞ ¼ 1=rn [see Eq. (3)]. The case n ¼ 2 then corresponds to
hydrodynamic interactions in shallow channels. For n ¼ 1, we arbitrarily choose f1ðrÞ ¼ e−r

2=2 to reflect the short range coupling
between colloidal spinners. Furthermore, the crystal is stabilized by reciprocal interactions FðrÞ ¼ −Arepr=krk5 (dipole-dipole
repulsion). (a) Sketch of dipolar field (n ¼ 2) induced by a given particle. α2 is the phase of mode n ¼ 2 and p ¼ ðcos α2; sin α2Þ.
(b) Glide of a dislocation in a crystal. The nonreciprocal interactions correspond to n ¼ 2, α2 ¼ 20° (Arep ¼ 10). The three snapshots
correspond to t ¼ 0, 0.25, and 0.5. (c) Left: numerical computation of the forces on the particles induced by dipolar pairwise
interactions (α2 ¼ 20°). Right: theoretical prediction for the force field according to Eq (8), for the same microscopic parameters.
(d) The variations of the gliding speed of a dislocation with the phase αn measured from our numerical simulations (red dots) are in
excellent agreement with our theoretical predictions (black solid line). From left to right n ¼ 1, 3, and 5 (Arep ¼ 1, 10, 50). (e) Same
plots as in (d) in the case of parity-even forces. From left to right n ¼ 2, 4, and 6 (Arep ¼ 10, 20, 50).
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Beyond the existence of a nonvanishing Peach-Koehler
force, our theoretical predictions quantitatively account for
the variations of the dislocation speed as a function of the
microscopic force’s phase αn shown in Fig. 3(d). Our
finding confirms and generalizes the experimental and
numerical results reported in odd colloidal crystals
(n ¼ 1) [7].
The influence of parity-even forces, is yet again more

subtle as they do not translate in macroscopic stresses but
net forces. This essential difference requires expanding the
conventional Peach-Koehler picture. We can gain some
intuition by looking at the symmetry of the microscopic-
force distribution around an isolated dislocation when
perturbed by dipolar forces (n ¼ 2), see Fig. 3(c). It clearly
reveals a simple shear component, which is correctly
captured by our continuum theory [Eq. (4)] [30]. Using
the strain field around an isolated dislocation [56,57], the
force field takes the form

F ðr; θÞ ¼ F 0

b · r
r2

�
sinð2θ − α2Þ

− cosð2θ − α2Þ

�
; ð8Þ

where F 0 ¼ −½K2ð1þ νÞ�=4π, and ν ¼ ðB − μÞ=ðBþ μÞ.
We can then define an effective Peach-Koehler force acting
on the dislocation core as FPK

i ¼ ϵij∂kF jbk. To evaluate it,
we need to regularize the force gradient at r ¼ 0. As
detailed in SM [30], we evaluate FPK as a weighted integral
over a circle of radius b around the dislocation core. We
finally find

FPK ¼ 1

4
F 0p; ð9Þ

where p ¼ ðcos α2; sin α2Þ is the vector defining the dipole
orientation [Fig. 3(a)]. This expression indicates that
nonreciprocal dipolar forces can sustain the gliding motion
of dislocations having a Burgers vector making a finite
angle with p. To further confirm this prediction, we use our
numerical simulations and plot the glide velocity as a
function of the angle α2. Figure 3(e) shows a remarkable
agreement with our effective elastic theory predicting a
speed proportional to cosα2. As a last result, we stress that
beyond the specifics of dipolar forces, the emergent Peach-
Koehler forces evaluated at the continuum level correctly
account for the variations of the dislocation speed measured
in our numerical simulations whatever the angular sym-
metry of the nonreciprocal forces [Fig. 3(e)].
We have elucidated the relations between the micro-

scopic symmetries of nonequilibrium interactions and the
macroscopic response of driven lattices. From a practical
perspective, the systematic classification summarized in
Fig. 2 suggests effective strategies to design active meta-
materials having mechanical properties out of reach of
equilibrium systems. From a fundamental perspective, our
findings immediately raise three basic questions: how does

dislocation motility redefine the plastic flows, fracture, and
melting of driven and active crystals?
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