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Particulate Projectiles Driven by Cavitation Bubbles
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The removal of surface-attached particles with cavitation bubbles is usually attributed to the jetting or shear
stresses when bubbles collapse. In this Letter, we report an unexpected phenomenon that millimeter-sized
spherical particles made of heavy metals (e.g., stainless steel), when initially resting on a fixed rigid substrate,
are suddenly accelerated like projectiles through the production of nearby laser-induced cavitation bubbles
of similar sizes. We show experimentally and theoretically that the motion of a particle with radius R, is

determined by the maximum bubble radius R}, ..., the initial distance from the laser focus to the center of the
particle L, and the initial azimuth angle ¢,. We identify two dominant regimes for the particle’s sudden
acceleration, namely, the unsteady liquid inertia dominated regime and the bubble contact dominated regime,
determined by Rp, xR,/ L%. We find the nondimensional maximum vertical displacement of the particle
follows the fourth power and the square power scaling laws for respective regimes, which is consistent with the
experimental results. Our findings can be applied to nonintrusive particle manipulation from solid substrates

in a liquid.
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Cavitation in a liquid containing particles exists in various
technological fields, e.g., cavitation erosion of hydraulic
machinery in silt-laden rivers [1,2], ultrasonic cleaning [3],
kidney stone fragmentation [4], etc. These processes involve
interactions of cavitation bubbles with free and/or surface-
attached particles, being attributed to the collapsing cavita-
tion bubbles, including microjetting toward boundaries,
consequent complex flows [5,6] and shock wave emissions
[7]. Upon generation, a cavitation bubble expands with a
tremendous velocity, during which period the influences on a
nearby particle have not been fully investigated.

Over the last two decades, a number of studies have
indicated that the explosive growth of the cavitation bubbles
accelerates the particles in an infinite liquid both on the
millimeter [8,9] and on the micrometer scales [10—-13]. In the
vicinity of a rigid boundary, recent studies have focused on
the impact of free-settling microparticles onto the solid
boundary accelerated by millimeter-sized cavitation bubbles
[14,15], presumably causing cavitation damage. Yet the role
of growing cavitation bubbles in removing particles from
surfaces has largely been neglected.

In this Letter, we report the unexpected phenomenon that
a heavy surface-attached particle, interacting with a nearby
cavitation bubble of similar size, is not only removed from
the surface, but also accelerates like a projectile with a
controllable vertical displacement. The reason for the
particle’s acceleration is revealed with theoretical analysis
and scaling laws are proposed for the forces on the particle
and the particle’s trajectory determined by initial control-
lable parameters.
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By wusing tweezers, a spherical particle (radius
R, =2.0-3.0 mm) is placed onto the horizontal upper
surface of a fixed plate (area 100 mm x 50 mm) in filtered,
deionized, and degassed water (O, concentration
2.3-4.3 mg/1); see Fig. 1. The plate is made of stainless
steel with a polished surface of an average roughness of
0.83 pm (Surface profiler, Zygo Nexview, U.S.A.) to lessen
friction between the plate and a particle. A cavitation
bubble with a maximum radius of R, ;.x = 1.5-3.0 mm
(equivalent radius with the same bubble volume as a
sphere) is induced in the vicinity of the particle by a
focused Q-switched pulsed ruby laser (QSR9, Innolas Ltd.,
U.K.). The location of the laser focus is aligned to the
plane of y = 0 with a high-speed camera (FASTCAM Mini
UXS50, Photron, Japan) monitoring from the top view. From
the side view, the cavitation bubble and the particle are
recorded with a high-speed camera (Phantom v711, Vision
Research Inc., U.S.A.) with different maximum bubble

Cavitation bubble

Water

FIG. 1. Experimental configuration (side view) and notation.
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radii R, ., initial distances from the laser focus to the
center of the particle L, and initial azimuth angles ¢,. The
laser and the high-speed cameras are synchronously trig-
gered by a delay generator (9524, Quantum Composers Inc.,
U.S.A.). Stainless steel particles of radii R, = 2.0, 2.5, and
3.0 mm (density p, = 7.9 x 10° kg/m?®) and brass particles
of radii R, = 2.5 mm (density p, = 8.3 x 10° kg/m?) are
placed at the start of the experiments.

First we show the behaviors of a stainless steel particle
(R, = 2.5 mm) with different Ly, R}, 14« and ¢o; see Fig. 2.
For case A with ¢, ~ 0° and at a small distance L, =~ 1.2R,,
from a cavitation bubble with R, ,x ~ 0.8R,,, the particle
detaches from the substrate before the bubble reaches its
maximum size at 0.203 ms; see the enlarged snapshot in
Fig. 2(a). The particle continues its rise as the bubble
collapses. After the bubble rebounds several times until it
disappears, the particle travels vertically in the water with a
maximum vertical displacement of = 4.6R,. Finally,
the particle returns and impacts on the substrate, where
it bounces several times until it stops.

With similar L and Ry, ,, and for larger initial azimuth
angles of ¢y ~ 30° (case B) and ¢, ~ 60° (case C), the
particle still detaches from the substrate during the bubble
growth; see the enlarged snapshots at 0.215 ms in Fig. 2(b)
and at 0.228 ms in Fig. 2(c). Subsequently, the particle
makes an oblique projectile motion with smaller maximum

FIG. 2.

vertical displacements compared with case A. To our
surprise, even when the cavitation bubble is generated
far away from the particle (L, ~ 2.4R,, case D), the
particle can still detach from the substrate. The detachment
of the particle is hardly visualized during the bubble
growth, this time with a maximum vertical displacement
greatly reduced to ~ 0.25R, [Fig. 2(d)]. The particle’s
projectile motion is reasonably attributed to the initial
velocity the particle achieves during its interaction with
the cavitation bubble. Thus, we look into the particle
motion during the bubble’s growth and collapse.

To understand the quantitative mechanism of the particle’s
sudden acceleration, we adapt the theoretical model by Best
and Blake [17] for a stationary rigid sphere near a cavitation
bubble, where the flow field was given by the Weiss sphere
theorem [18]. In our case, the plate is considered as a
hydrodynamics mirror because the Reynolds number is
sufficiently large [19], thus including the images of the
particle and the bubble [panel (i) in Fig. 3(a)]. For simplicity,
the dynamics of the cavitation bubble is approximated by the
Rayleigh equation for spherical bubbles (with timescale

Ry max/P/Ap with Ap = p, — p, and the vapor pressure
P, [2]), which fits well with the experimental results during
the bubble growth [Fig. 3(b)]. Then, the velocity potential of
the flow field around the particle ®(x,y,z,1) is resolved
by the superposition of basic solutions [16]. Thus, we use the
unsteady Bernoulli equation, which reads

Case A

Case B

Case C

Case D

Image sequences showing the sudden acceleration of a stainless steel particle (radius R, = 2.5 mm) from a substrate made of

stainless steel by cavitation bubbles for (a) case A, ¢y = 3.4°, Ly/R, = 1.17, Ry, ;s /R, = 0.83; (b) case B, ¢y = 31°, Ly/R,, = 1.20,
Ry max /R, =0.84; (c) case C, @y=56° Ly/R,=1.04, Ryy/R,=0289; and (d) case D, ¢@y=35° Ly/R,=2.37,
R max/ R, = 0.81. The regions focused on the bottoms of the particles are enlarged in the fourth column. The last column displays
the superimposition of the outlines of the particle at the initial position (“1”), at the maximum height (“2”), and the snapshot of impact of
the fallen particle on the plate (“3”). The trajectory of the center of the particle in each case is visualized by the solid line. Videos are

provided in the Supplemental Material [16].
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with the pressure in the far field p,, the density of water p,
the gravitational acceleration g, and the baseline in the far
field at z,, = 0 to resolve the pressure distribution in the
liqguid. Moreover, we consider the pressure on the particle
equals the vapor pressure in the contact region of the
cavitation bubble with the particle for R, + R;, > L. The
hydrodynamic forces exerted on the particle are sub-
sequently calculated by numerical integration around the
particle’s surface.

Figures 3(c) and 3(d) show the evolution of the vertical
and horizontal components of the hydrodynamic forces on
the particle calculated for cases A-D. The vertical force
converts from a compressive force to a lift force during the
bubble growth highlighted by the yellow region. This
conversion, with its highly time-dependent feature, can
be understood by the leading contribution of the unsteady
pressure around the particle, i.e., p ~—p(0®/0t). The
potential ® is proportional to the volume growth rate of the
bubble Q(t) = 4zR}R,, with the radius R, and the velocity

of the bubble-liquid interface Rh. Thus, the resultant force
on the spherical particle F = ¢ — pdS is approximately
proportional to (dQ/dt) = 4x(2R,R3 + R2R,) with the
acceleration of the bubble-liquid interface R,. At t — 0,
the bubble expands at a tremendous speed Rh, leading to
large (dQ/dt). As a result, the resultant force presses the
spherical particle on the rigid boundary in the vertical
direction, while pushing the particle away from the bubble
in the horizontal direction [panel (ii)) in Fig. 3(a)].

The bubble then undergoes a decelerating expansion with
2R,R} > 0 and R3R,, < 0, and thus (dQ/dt) decreases to
zero and changes its sign, inducing the conversion of the
resultant force composed of a lift force in the vertical
direction and an attractive force in the horizontal direction
[panel (iii) in Fig. 3(a)].

Next, we verify that our theoretical model gives a
reasonable prediction of the particle displacements during
the bubble’s growth and collapse. Since the translations of
the particle by the end of the bubble’s collapse are smaller
than 0.05R, in both vertical and horizontal directions
[experimental data in Figs. 3(e) and 3(f)], a simple way
to calculate the particle displacements is to adopt the
evolution of the forces in Figs. 3(c) and 3(d), ignoring
the influence of the small translations of the particle on the
flow field. Since all the surface forces on the particle
have been included in the component forces F, and F,, the
force balance on the particle in the vertical direction reads
F,—m,qg=m,a, . with the mass of the particle m, and
the component acceleration a,, ., and in the horizontal
direction F, =m,a,, with the component acceleration
a, . By time integral, the displacements of the particle are
displayed in Figs. 3(e) and 3(f), both being quantitatively
consistent with the experimental results. On a longer
timescale, the rebounds of the bubbles may exert forces
on the particle in similar manners discussed above, inter-
fering more with the horizontal motion of the particle at
smaller standoff distances to the plate (e.g., case C).

In our analysis, the contact of the bubble and the particle
also contributes to a particle’s sudden acceleration. To
verify this experimentally, by the balance of momentum in
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FIG. 3. Experimental and theoretical results for the particle’s sudden acceleration. (a) Theoretical model. (i) Sketch of the method of
images. Hydrodynamic forces on the particle (ii) at the bubble generation and (iii) when the bubble’s volume growth rate Q(z) slows
down. (b) Evolution of the normalized bubble radius. The black line is based on the solution to the Rayleigh equation for a spherical
bubble. The forces exerted on the particle are shown in the (c) vertical and (d) horizontal directions. The yellow areas highlight the time
period of the force conversion. The normalized particle displacements are shown in the (e) vertical and (f) horizontal directions.
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the vertical direction from the bubble’s nucleation to its
first collapse AT, the time-averaged component force
(F.) exerted on the particle can be estimated as (F,) =
m, v, /AT, with the initial vertical velocity v, , estimated
from the time average during the approximate uniform
motion of the particle after detachment. Figure 4(a) dis-
plays the normalized force (F,)* = (F,)/(ApaR% cos ¢p)
versus Ry, max R,/ L2, with experimental results of stainless
steel and brass particles with ¢, € (0°,80°), Ly/R, €
(1.0,3.6), and Ry ./R, €(0.4,12), leading to
Ry maxR,/L% € (0.05,1.1).

For cases without bubble-particle contact, the approxi-
mate linear relationship between (F.)* and Ry R,/L3
[Fig. 4(a)] can be understood by the scaling of the hydro-
dynamic force from the unsteady liquid inertia, i.e.,

<#p(aq)/at)nz dS> = p<dQ/dt>1<Rp’ Ly, (ﬂ()),
with a surface integral independent of time I(R,, Ly, @)
with the dimension of length. The time-averaged (dQ/dt)
from £, [when F, changes its sign to positive, e.g., marked
for case D in Fig. 3(c)] to AT (twice the Rayleigh collapse
time) reads (dQ/dt) = {[Q(AT) - Q(ty)]/AT}; note
to < AT. At t = AT, the bubble shrinks to the minimum
volume (R, ~ 0), giving Q(AT) = 0. Solving (dQ/dt) =

(a) 0.5
Dominated by
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bubble contact
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FIG. 4. Scaling laws controlling the particle acceleration.
(a) Nondimensional time-averaged lift force estimated from
experimental results versus Rj, n.xR,/ L} for two dominant
regimes. (b) Nondimensional maximum vertical displacement
of the particle with Az, defined by Eq. (3) versus R}, max/Lo-
Solid lines indicate the scaling laws for the unsteady liquid inertia
dominant regime and dashed lines for the bubble contact regime.

att =1y with R, = \/Z (Ap/p)[(Rpmax/Rp)* = 1][20], we
approximate Q(fy) as 7.05R; .. \/(Ap/p) and thus (F,)
as —=3.85ApRy, maxI (R, Lo. ¢g). With the leading velocity
potential of the point source for the bubble, I(R,. Ly. @)
is both theoretically and numerically found to be

—(R3 cos ¢g/L}), following an inverse-square law of
Ly [16]. Thus, the normalized lift force reads

<Fz> - Rb.maxRp
AprR3 cos g L3

(F.)" = ; (2)

as proven by the linear fitting for the cases of no bubble-
particle contact, denoted by a solid line in Fig. 4(a).

With bubble-particle contact, the time-averaged lift force
increases nonlinearly with increasing Ry, R, /L3 until
(F,) approaches a constant lift force of the same magnitude
as ApﬂRf, cos ¢, guided by the dashed line in Fig. 4(a).
This indicates that the lift force on a particle in a static
liquid reaches its maximum when the time-averaged con-
tact radius of the bubble with the particle equals R,.
Therefore, the evolution of the particle acceleration can
be divided into two regimes: the unsteady liquid inertia
dominated regime and the bubble contact dominated
regime.

Assuming the particle motion in the liquid after bubble
collapse is dominated by gravity, we obtain the relationship
between the maximum vertical displacement of the
particle and the initial parameters by Az, = v3./(29) =
((F)AT/m,)*(2g)"
dominates, Eq. (2) leads to (Azy./AZg)
with a length scale

(e o

denoted by the solid line in Fig. 4(b). The bubble
contact dominated regime has a limiting condition when
the bubble is nucleated on the particle surface, i.e.,
Lo/R, = 1. With (F,)* = const, (Azy,/Azp) is pro-
portional t0 (Rpmu/R,)* with a limiting value of
(Rpy.max/Lo)?%; see the dashed line in Fig. 4(b).

In reality, the inevitable friction between the particle and
the boundary exerts a torque, thus rotating the particle.
However, the rotating motion plays a limited role in the
particle’s sudden acceleration, since friction works in the
short period of time before the particle detaches from
the substrate. Moreover, friction can be reduced by chang-
ing the materials of the particle and the boundary, e.g., into
glass particles and polymethyl methacrylate (PMMA)
substrates and the particle’s rotation can be visualized by
painting some patterns on the sphere. Our Supplemental
Video shows the particle is accelerated without visible
rotation [16].

. When the unsteady liquid inertia
(Rb,max/LO)4’
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In conclusion, we find by experiments that, during
the explosive growth of a laser-induced cavitation bubble
of similar size, millimeter-sized spherical particles are
suddenly accelerated like projectiles from a fixed rigid
boundary. By estimating the time-averaged lift force on
the particle during the bubble’s growth and collapse, we
propose two dominant regimes of the force, namely, the
unsteady liquid inertia and the bubble-particle contact. For
respective regimes, the fourth power and the square power
laws are derived for the normalized maximum vertical
displacement of the particle. The findings of this work
may be helpful to the laser-assisted noninvasive manipu-
lation of particles, e.g., on-demand collection of samples
without mechanical contact from ground, and may be
inspiring for the related situation of removing calculi and
their fragments from tissues with reduced harm from
ablation.
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