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Admitting non-Riemannian geometries, double field theory extends the notion of spacetime beyond the
Riemannian paradigm. We identify a class of singular spacetimes known in general relativity with regular
non-Riemannian geometries. The former divergences merely correspond to coordinate singularities of the
generalized metric for the latter. Computed in the string frame, they feature an impenetrable non-
Riemannian sphere outside of which geodesics are complete with no singular deviation. Approaching the
non-Riemannian points, particles freeze and strings become (anti)chiral.
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Introduction.—Spacetime singularities urge general rela-
tivity (GR) toevolve. Ifnot in—still elusive—quantumgravity,
the singularities in any Riemannian metric-based classical
theories of gravity have several layers: (i) curable, coordinate
singularityof themetric, (ii) genuine, curvature singularity, and
(iii) geodesic incompleteness, as featured prominently in
Penrose’s theorem [1]. Here the item label (i), e.g., reflects
theundoubledspacetimecase,and later the label (i)) reflects the
doubled spacetime case. However, on the one hand, (ii) does
not necessarily imply (iii) (see, e.g., [2] for a recent example),
and,on theotherhand,oneencounters an intrinsicambiguity in
choosing a frame [3,4] when applying these notions to scalar-
tensor theories (e.g., [5]), since Weyl transformations simply
do not leave curvatures and geodesics invariant.
From a string theory perspective, the Riemannian metric

gμν is only a fraction of the massless sector of closed strings
which should further contain a skew-symmetric B-field
and a scalar dilaton ϕ. The theory implies a crucial symmetry,
OðD;DÞ with spacetime dimension D, which transforms the
trio fg; B;ϕg into one another [6,7]. It calls for an OðD;DÞ
singlet, e−2d ¼ ffiffiffiffiffiffi−gp

e−2ϕ, and an OðD;DÞ tensor,

HAB ¼
�

g−1 −g−1B
Bg−1 g − Bg−1B

�

¼
�
1 0

B 1

��
g−1 0

0 g

��
1 −B
0 1

�
; ð1Þ

which served as a generalized metric in the OðD;DÞ
manifest formulations of both string worldsheet actions
[8–16] and target spacetime effective descriptions currently
called double field theory (DFT) [17–22]. By taking not
fg; B;ϕg but the OðD;DÞ multiplets themselves as the
fundamental variables, DFT opens a new avenue beyond the
Riemannian paradigm [23–26]. In this approach, e−2d is an
elementary scalar density with a unit diffeomorphic weight,
and HAB satisfies its own defining properties:

HAB ¼ HBA; HA
CHB

DJ CD ¼ J AB: ð2Þ
Here,

J AB ¼
�
0 1

1 0

�

is the OðD;DÞ invariant metric which, with its inverse,
lowers and raises the OðD;DÞ indices, A;B ¼ 1; 2;…; 2D.
Seen as a square matrix,HA

B squares to identity and, hence,
is invertible with j detHj ¼ 1.
Remarkably, DFT can be formulated in terms of any

generalized metric that satisfies the defining relations (2)
and may have evolved to an alternative “pure gravity” in the
sense that both d and HAB, i.e., the whole closed string
massless sector, are taken as the fundamental, gravitational
fields. It is by now fully equipped with its own Christoffel
symbols ΓABC, scalar/Ricci/Einstein curvatures [27,28],
and Einstein equations coupled to extra “matter”: GAB ¼
8πGTAB [29]. This single expression unifies the equations
of motion of the fundamental variables fd;HABg. Besides,
as solutions to condition (2), all possible classical geom-
etries which DFT is capable of describing have been
classified by two non-negative integers, ðn; n̄Þ [24]. Only
the type (0,0) is Riemannian, amounting to the well-known
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parametrization (1), while others are non-Riemannian in
nature: The upper left D ×D block of the generalized
metric is degenerate with “nullity,” i.e., dimension of the
kernel, nþ n̄, and, thus, does not yield an invertible
Riemannian metric. For a non-Riemannian geometry to
be a consistent string background at the quantum level,
it turns out necessary to put n ¼ n̄ in the usual critical
dimensions, D ¼ 10 or 26 [26]. Nonrelativistic string
[30–32] or torsional/stringy Newton-Cartan gravities of
recent interest [33–40] are of the type (1,1) [25,41–47]. The
condition n ¼ n̄ further makes the non-Riemannian geom-
etry compatible with type II supersymmetric DFT and
superstring [42,48] (cf. Refs. [49,50]): For spin group
Spinðt; sÞ × Spinðs; tÞ with tþ s ¼ 10, the allowed range
of n ¼ n̄ is from zero to minðt; sÞ [24].
Formally, DFT employs a doubled coordinate system,

xA ¼ ðx̃μ; xνÞ, and subsequently unifies diffeomorphisms
and B-field gauge symmetry into “doubled” diffeomor-
phisms. Yet, the geometry is not truly doubled: Half of
the coordinate dependency should be turned off, e.g., by
setting ð∂=∂x̃μÞ≡ 0, up to OðD;DÞ rotations. This
may suggest that half of the doubled coordinates are
actually gauged [51]. By gauging, e.g., x̃μ explicitly as
DxA ¼ ðdx̃μ − Aμ; dxνÞ, it is possible to define an
OðD;DÞ-symmetric proper length [52] by means of
the corresponding pullback of the generalized metric
DxADxBHAB and to further construct “doubled-yet-
gauged” actions for particles [53,54] and strings [23,42].
When the generalized metric is (0,0) Riemannian, all the
components of the auxiliary gauge connection Aμ appear
quadratically in the actions. After integrating them out, one
recovers the conventional particle and string actions. On the
other hand, when the background is non-Riemannian,
nþ n̄ components come out linearly to play the role of
Lagrange multipliers. Consequently, the particle is frozen
with identically vanishing proper velocities over the non-
Riemannian ðnþ n̄Þ-dimensions. Furthermore, the string
becomes chiral over the n-directions and antichiral over the
n̄-directions [24], as happens in the (1,1) nonrelativistic
string case [30]. This also implies that, at the classical level,
chiral strings get frozen, too [26].
From the Riemannian perspective, all the non-

Riemannian backgrounds are singular geometries, as the
would-be Riemannian metric diverges. Contradistinctly,
they are well-behaved regular geometries in the doubled
framework. This motivates us to revisit known singular
Riemannian geometries and examine their non-Riemannian
regularity; cf. earlier related discussions inRefs. [53,55–57].
In this Letter, we report that a class of curvature singularities
in GR are regular non-Riemannian geometries of DFT.
They are atworst coordinate singularities ofDFT.Moreover,
we show through examples that the ordinary (undoubled)
geodesics defined in their string frame—which descend
from OðD;DÞ-symmetric (doubled) geodesics—are com-
plete and that physically measurable tidal forces do not

diverge, in spite of Riemannian curvature singularities. This
last statement, although motivated by the DFT perspective,
holds independently within the conventional GR setup.
Main idea and results.—The Riemann-wise singular

geometries of our interest assume the following generic
form, with xμ ¼ ðt; y; xiÞ:

ds2 ¼ 1

F
ð−dt2 þ dy2Þ þ Gijdxidxj;

Bð2Þ ¼ � 1

F
dt ∧ dyþ 1

2
βμνdxμ ∧ dxν;

e−2ϕ ¼ FΨ: ð3Þ

Our nonexhaustive list of examples includes (a)
D ¼ 2 black hole by Witten [58], (b) D ¼ 4 spherical
solution by Burgess, Myers, and Quevedo [59], and
(c) D ¼ 10 black 5-brane by Horowitz and Strominger
[60]. All of them feature curvature singularities where F
vanishes, while Gij, βμν, Ψ remain harmlessly regular.
Substituting (3) into (1) yields the crucial observation
(cf. Refs. [23,43,44,61] for earlier examples) that the
coordinate singularity is absent in the OðD;DÞ fundamen-
tal variables—no negative power of F appears:

e−2d ¼ Ψ
ffiffiffiffi
G

p
; H ¼

�
1 0

β 1

�
H
∘ � 1 −β

0 1

�
; ð4Þ

where, with Pauli matrices,

H
∘
AB ¼

0
BBB@

−Fσ3 0 �σ1 0

0 G−1 0 0

�σ1 0 0 0

0 0 0 G

1
CCCA: ð5Þ

Clearly, at the points where F ¼ 0, the DFT geometry is
non-Riemannian, specifically of type (1,1), as expected
from the underlying Minkowskian spin group signature.
We now revisit the three aforementioned layers of

singularity from the “doubled” perspective.
(i)) Removing the coordinate singularity from general-

ized metric through doubled diffeomorphisms.—The sin-
gular term in Bð2Þ is crucial in regularizingH. In fact, in the
examples below, this term being pure gauge would not be
present when writing the solutions in their simplest form.
We shall nevertheless introduce such a singular pure gauge
term in order to match the privileged doubled coordinate
system (3). Namely, through doubled diffeomorphisms,
one can eliminate what should be construed as a coordinate
singularity of the generalized metric.
(ii)) All the OðD;DÞ-symmetric curvatures are regu-

lar.—Once the DFT fundamental variables fHAB; e−2dg
are made free of any singularity (and twice continuously
differentiable), all the OðD;DÞ-symmetric curvatures are
automatically regular. In fact, all our examples satisfy the
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equations of motion of the NS-NS supergravity, possibly
with an OðD;DÞ-symmetric “cosmological constant”:

Rþ 4□ϕ − 4∂μϕ∂μϕ −
1

12
HμνρHμνρ − 2ΛDFT ¼ 0;

Rμν þ 2▽μð∂νϕÞ −
1

4
HμρσHν

ρσ ¼ 0;

d⋆ðe−2ϕHð3ÞÞ ¼ 0: ð6Þ
This readily implies that the corresponding nonsingular DFT
ansatz (4) solves the DFT Einstein equations GAB þ
J ABΛDFT ¼ 0 everywhere even at the non-Riemannian
points of F ¼ 0. It also means that all the OðD;DÞ-
symmetric DFT curvatures are trivially regular [57].
Similarly, while the conventional dilaton ϕ diverges as
F → 0, the DFT dilaton d remains finite [cf. (4)], and,
hence, so does the OðD;DÞ-symmetric version of the
Fradkin-Tseytlin term [62] in doubled string actions [16,63].
(iii)) Geodesics are complete in the string frame:

Impenetrable non-Riemannian sphere.—The fact that the
DFT dilaton e−2d carries a nontrivial diffeomorphic weight
prevents it from coupling to the OðD;DÞ-symmetric
doubled-yet-gauged particle and string actions [23,53]
and, hence, to particle and stringy geodesics, whose
equations read, respectively [24,64],

e
d
dτ

ðe−1HABDτxBÞ þ 2ΓABCðP̄DτxÞBðPDτxÞC ¼ 0;

1ffiffiffiffiffiffi
−h

p ∂αð
ffiffiffiffiffiffi
−h

p
HABDαxBÞ þ ΓABCðP̄DαxÞBðPDαxÞC ¼ 0;

ð7Þ
where e and hαβ are the worldline einbein and worldsheet
metric, respectively, while PAB, P̄AB stand for 1

2
ðJ AB �

HABÞ and Dτx, Dαx are the pullbacks of the doubled-yet-
gauged differential. This rigidity naturally settles the issue
of the frame ambiguity. Upon the Riemannian background
of (1), an OðD;DÞ-symmetric particle follows geodesics
defined in the string frame [65]: After fixing gauges and
solving for the auxiliary connection, (7) can be shown to
reproduce the standard (undoubled) expressions

ẍμþγμνρ _xν _xρ¼0⇔
d
dλ

ðgμν _xνÞ−
1

2
∂μgνρ _xν _xρ¼0;

∂þðgμν∂−xνÞþ∂−ðgμν∂þxνÞþðHμνρ−∂μgνρÞ∂þxν∂−xρ¼0:

ð8Þ
Focusing on the ansatz (3) and by analogy with (ii)), the
doubled formulation (7) in terms of the generalized metric
HAB may still suggest that geodesics are regular in the limit
F → 0, despite the fact that its undoubled counterpart (8)
involves the singular Riemannian metric gμν. Indeed, as we
show below for the aforementioned three examples, both
null and timelike geodesics are complete (at least) in the
region F > 0. The non-Riemannian points of F ¼ 0 form a

sphere for D > 2 (or hyperbola for D ¼ 2) inside of which
(F < 0) no timelike or null geodesics can penetrate.
Timelike and nonradial null geodesics cannot even come
close to the sphere from outside (F > 0). Only radial null
ones may approach the sphere with identically vanishing
proper velocities taking infinite affine parameter. Besides,
undoubled strings—as an alternative probe of the “singular”
geometries [66,67]—become (anti)chiral: With light-cone
coordinates y� ¼ y� t and also ∂� ¼ ð∂=∂σ�Þ on the
worldsheet, as already used in (8), we get ∂−yþ ¼ 0 ¼
∂þy− (or ∂þyþ ¼ 0 ¼ ∂−y−) in the limit F → 0. Thus, the
undoubled, or conventional, particle geodesics and string
propagations agree with the non-Riemannian (freezing/
chiral/antichiral) behaviors predicted from the previous
doubled-yet-gauged sigma model approach [23,24] which
relied on the auxiliary gauge connection as Lagrange
multiplier (cf. the introduction).
(ii) and (iii) again: Geodesic deviations are also

regular.—In DFT, there is no OðD;DÞ-symmetric com-
pletion of the Riemann curvature [27,68,69]. Hence, the
criterion of “OðD;DÞ-symmetric curvature singularity”
may appear unbalanced or somewhat unfair compared to
GR. As a step toward restoring the balance as well as
focusing on genuine physical quantities, we further analyze
the geodesic deviation and the “tidal force” therein (again
in the string frame):

D2ξμ

dλ2
¼ Rμ

νρσ _xν _xρξσ: ð9Þ

As the geodesics are complete and smooth for F ≥ 0,
their deviations ξμ should be regular. Then, although
the Riemann curvature itself diverges, its contraction
with the vanishing velocities Rμ

νρσ _xν _xρ as well as the
square norm jD2ξ=dλ2j2 ¼ gμνðD2ξμ=dλ2ÞðD2ξν=dλ2Þ can
be finite, thus preventing the physically measurable
quantities from being singular. This further property
will be checked to hold in the following section for
examples (a)–(c).
Examples: Geodesics and string propagation.—We now

take a closer look at each example [58–60] to analyze
generic geodesics (8) supplemented by the Hamiltonian or
Virasoro constraints

gμν _xμ _xν ¼ E; ∂þxμ∂þxνgμν ¼ 0¼ ∂−xμ∂−xνgμν: ð10Þ
Hereafter, E is to be either −1 (timelike) or 0 (null).
(a) D ¼ 2 black hole: Non-Riemannian hyperbola.

The D ¼ 2 geometry à la Witten [58] is characterized by
ds2¼dyþdy−=F with F ¼ −1þ yþy−=l2 ¼ ðF=jFjÞe−2ϕ.
It solves (6) when ΛDFT ¼ −ð2=l2Þ. From the on-shell
value of the Ricci scalar R ¼ −ð4=l2FÞ, the hyperbola
yþy− ¼ l2 corresponds to a curvature singularity. We stress
that, though the H-flux is trivial in two dimensions, the
B-field still plays a crucial role in making the generalized
metric free of singularity (5).
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Since the metric is invariant under scaling δy� ¼ �y�,
there are two constants of motion for every geodesic:

L ¼ ðy− _yþ − yþ _y−Þ=F; E ¼ _yþ _y−=F; ð11Þ

which give, setting ω≡ l_yþ=yþ,

l
dF
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F

�
4E þ

�
L2

l2
þ 4E

�
F

�s
;

l2
d2F
dλ2

¼
�
L2

l2
þ 4E

�
F þ 2E;

L2

l2
þ 4E ¼

�
ω −

E
ω

�
2

þ
�
ω

F

�
2

þ 2ðω2 − EÞ
F

:

It follows that timelike geodesics (E ¼ −1) starting from
the region F > 0 will never reach the non-Riemannian
hyperbola, satisfying F ≥ 4=½ðL=lÞ2 − 4� > 0. Null ones
(E ¼ 0) may approach only at past or future infinity as
F ¼ e�Lλ=l2F0, since the most general null geodesics are,
from (11) with initial values y�0 and F0 at λ ¼ 0, either

�
yþðλÞ
y−ðλÞ

�
¼

�
l2=y−0 þ ðyþ0 − l2=y−0 ÞeLλ=l

2

y−0

�
ð12Þ

or yþðλÞ ¼ yþ0 , y−ðλÞ ¼ l2=yþ0 þ ðy−0 − l2=yþ0 Þe−Lλ=l
2

.
For these two solutions, the only nonvanishing com-
ponents in (9) are, respectively, Rþ

νρ− _xν _xρ ¼ −ðL=y−0 lÞ2
and R−

νρþ _xν _xρ ¼ −ðL=yþ0 lÞ2, which are all finite with
jðD2ξ=dλ2Þj2 ¼ 0. In fact, the variations of the general
solutions (12) by the free parameters, y�0 , also lead to finite
deviation vectors ξμ. We conclude that the space F > 0 is
geodesically complete with no singular deviation. We turn
to the string dynamics (8) and (10), which read

∂þ∂−yþ − ∂þyþ∂−yþ
∂ lnF
∂yþ ¼ 0; ∂þyþ∂þy− ¼ 0;

∂þ∂−y− − ∂þy−∂−y−
∂ lnF
∂y− ¼ 0; ∂−yþ∂−y− ¼ 0:

The second relation gives either ∂þyþ ¼ 0 or ∂þy− ¼ 0.
If ∂þyþ ¼ 0, the third implies ∂þ½ð1=FÞ∂−y−� ¼ 0 such
that ∂−y− ¼ Ffðσ−Þ for some one-variable function fðσ−Þ.
Thus, ∂−y− vanishes when F ¼ 0. On the other hand, if
∂þy− ¼ 0, the first implies ∂þ½ð1=FÞ∂−yþ� ¼ 0 and
∂−yþ ¼ Ffðσ−Þ. Thus, ∂−yþ vanishes when F ¼ 0.
Similar analysis holds for the last relation. We conclude
that, in any case, one of fyþ; y−g is chiral and the other is
antichiral on the non-Riemannian hyperbola.
(b) D ¼ 4 two-parameter family of spherical solution.

Our D ¼ 4 example is a spherical solution from Ref. [59]:

ds2 ¼ 1

FðrÞ ð−dt
2 þ dr2Þ þRðrÞ2ðdϑ2 þ sin2ϑdφ2Þ;

Bð2Þ ¼ � 1

FðrÞ dt ∧ drþ h cosϑdt ∧ dφ;

where FðrÞ and RðrÞ2 are, with two free parameters b and
h [53] (see also [29] for their physical interpretations),

1

FðrÞ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−h2=b2

p
2

�
r

rþb

�
þ1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−h2=b2

p
2

�
rþb
r

�
;

RðrÞ2¼
�
rþ1

2
b−

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−h2

p �
2

þ1

4
h2¼rðrþbÞ

FðrÞ : ð13Þ

We require 0 < jhj ≤ b, such that the only singular source
in the metric is at r ¼ 0 as limr→0 FðrÞ ¼ 0. The Ricci
scalar diverges at r ¼ 0 as R ≃ −½2=ðb −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − h2

p
Þr�.

Nevertheless, with nonsingular Rð0Þ−2 due to h ≠ 0, the
generalized metric HAB, dilaton e−2d ¼ RðrÞ2 sinϑ, and
DFT curvatures are all finitely regular. The non-
Riemannian points of F ¼ 0 form a 2-sphere with non-
trivial proper area 4πRð0Þ2 ¼ 2πbðb −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − h2

p
Þ.

For geodesics, without loss of generality, we put
ϑ ¼ π=2. The conserved energy E and angular momentum
Lφ set

_t ¼ EFðrÞ; _φ ¼ LφRðrÞ−2: ð14Þ
In particular, _t vanishes on the non-Riemannian sphere. The
remaining radial motion reads

0 ¼ _r2 þ VðrÞ; VðrÞ ¼
�
−E − E2FðrÞ þ L2

φ

RðrÞ2
�
FðrÞ:

From limr→0 V ¼ 0, it follows that _r also gets trivial at r ¼ 0.
In fact, since limr→0V 0ðrÞ ¼ 4L2

φ=½bðb −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − h2

p
Þ2� −

½2E=ðb −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − h2

p
Þ� is positive for either E ¼ −1 or E ¼

0 with Lφ ≠ 0, the corresponding potential is positive close
to r ¼ 0þ. Thus, both the timelike and the nonradial null
geodesics cannot come close to the sphere fromoutside.Only
the radial null oneswithE ¼ 0 ¼ Lφmay, but it takes infinite
affine parameter as the integral of dλ ¼ ðEFÞ−1dr diverges
logarithmically. These results can be all attributed
to the repulsive gravitational force around the non-
Riemannian sphere, while it is attractive for large r ∼R
as gtt ∼ −1þ ½ðb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2=b2

p
Þ=R�.

For the radial null geodesics _t ¼ EF ¼ j_rj, we also
confirm that the deviation (9) is finitely regular: The only
nontrivial components of Rμ

νρσ _xν _xρ at r ¼ 0 take the values

½ð�2E2Þ=ðb −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − h2

p
Þ2� for μ, σ being t or r, with

jðD2ξ=dλ2Þj2 ¼ 0.
In the limit r → 0 and, hence, F → 0, the string

dynamics (8) and (10) implies, with y� ¼ r� t,
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∂þyþ∂−yþF0ð0Þ ¼ 0; ∂þyþ∂þy− ¼ 0;

∂þy−∂−y−F0ð0Þ ¼ 0; ∂−yþ∂−y− ¼ 0; ð15Þ

where F0ð0Þ ¼ limr→0F0ðrÞ ¼ ½2=ðb −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − h2

p
Þ� is non-

vanishing. This confirms that one of fyþ; y−g is chiral
while the other is antichiral on the non-Riemannian sphere.
(c) D ¼ 10 black 5-brane. One particular black

5-brane geometry from Ref. [60] reads

ds2 ¼ −dt2 þ dr2

FðrÞ þ r2dΩ2
3 þ dx⃗2;

F ¼ 1 − ðrc=rÞ2 ¼ e−2ϕ:

The Ricci scalar diverges at both r ¼ 0 and r ¼ rc as
R ¼ −4r4c=½r4ðr2 − r2cÞ�. Though the H-flux is trivial, a
pure gauge B-field should be introduced, as prescribed
in (3). The generalized metric (5) is then non-Riemannian
regular on the 3-sphere of the radius r ¼ rc but still singular
at r ¼ 0. We shall see soon that the non-Riemannian sphere
forms the boundary of a geodesically complete space of
F > 0 which excludes the dangerous point r ¼ 0.
The geodesic analysis is similar to example (b) and

reduces to _t ¼ EF and _r2 þ VðrÞ ¼ 0 with a potential
involving non-negative constants L2

Ω (total angular momen-
tum) and P⃗2 (extra momentum):

VðrÞ ¼
�
−E − E2FðrÞ þ L2

Ω
r2

þ P⃗2

�
FðrÞ:

Since V 0ðrcÞ ¼ 2ð−E þ L2
Ω=r

2
c þ P⃗2Þ=rc is positive for

either E ¼ −1 or E ¼ 0 with L2
Ω=r

2
c þ P⃗2 ≠ 0, and VðrcÞ

vanishes, the corresponding potential is positive close to
r ¼ rþc . Thus, timelike and generic null geodesics cannot
reach the non-Riemannian sphere. Only the radial null ones
having _t ¼ EF ¼ j_rj and L2

Ω ¼ 0 ¼ P⃗2 can, albeit taking
infinite affine parameter with vanishing proper velocities.
Besides, the deviation (9) is regular: The only nontrivial
values of Rμ

νρσ _xν _xρ at r ¼ rc are �2E2=r2c, for μ, σ being t
or r, with jðD2ξ=dλ2Þj2 ¼ 0.
In the limit r → rc and, hence, F → 0, the chirality

relations of the previous example (15) still hold after
replacing F0ð0Þ by F0ðrcÞ ¼ 2=rc.
Discussion.—We have shown that the curvature singu-

larities featured in a large class of GR spacetimes (3) are
mere artifacts of Riemannian geometry. In particular,
we have noted the remarkable fact that physically meas-
urable tidal forces do not diverge. Further examples
include D ¼ 10 superstring [70,71] with negative tension
[43,44,56,72,73]. The corresponding generalized metric
was shown to be regular in Ref. [56].
Converted to the Einstein frame, gEμν ¼ e4ϕ=ð2−DÞgμν,

the D > 2 examples feature more severe curvature
singularities and become geodesically incomplete (e.g.,
[74]) with singular deviations. D ¼ 2 DFT is essentially

Jackiw-Teitelboim gravity [75,76] as gJTμν ¼ e−2ϕgμν.
Witten’s solution is then mapped to flat spacetime.
Constant non-Riemannian backgrounds were shown in

Ref. [46] to admit infinite-dimensional isometries. All of
them might be realized as the asymptotic symmetries of the
non-Riemannian spheres with large radius (as F0 → 0). The
associated, infinitely many, conserved charges then might
store all the information of the ingoing and freezing null
radial geodesics. We call for further studies.
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