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We present a simple class of mechanical models where a canonical degree of freedom interacts with
another one with a negative kinetic term, i.e., with a ghost. We prove analytically that the classical motion
of the system is completely stable for all initial conditions, notwithstanding that the conserved Hamiltonian
is unbounded from below and above. This is fully supported by numerical computations. Systems with
negative kinetic terms often appear in modern cosmology, quantum gravity, and high energy physics and
are usually deemed as unstable. Our result demonstrates that for mechanical systems this common lore can
be too naive and that living with ghosts can be stable.
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There are various reasons to be interested in field
theories, or their simpler mechanical counterparts, where
1 degree of freedom has a ghostly nature, i.e., a negative
kinetic term, while the other degrees of freedom have the
usual positive-definite kinetic terms. Following the pioneer
work of Ostrogradsky [1] it has been shown that such a
situation appears generically in the Hamiltonian formu-
lation of theories with higher derivative interactions [2,3]
(see also, e.g., Ref. [4,5]), while such interactions have in
turn interesting properties to regulate field theories in the
UV [2,6–8]. A ghost copy of the standard model was also
invoked in attempts to solve the cosmological constant
problem [9–11]. More recently, ghostly theories have also
emerged in cosmology to describe nonstandard dynamics
of the universe including bouncing cosmologies (see, e.g.,
Ref. [12]) and dark energy with a phantom equation of state
[13] which is still allowed by the latest cosmological data
(e.g., Ref. [14]). Related proposals can also address the
Hubble tension problem (see, e.g., Ref. [15]). Sometimes
such nonstandard dynamics can be obtained in ghostfree
theories (see, e.g., Ref. [16]) where, however, the
Hamiltonians are necessarily unbounded from below
[17]. This implies a potential vulnerability to nonlinear
instabilities.
The standard lore is of course that theories with ghosts

and/or energies unbounded from below are unstable and as
such problematic, even though various authors have advo-
cated differently [6,8,18–24]. The instability inherent to
ghostly models, usually dramatic at the quantum field
theory level (see, e.g., Ref. [25]), is already seen at the
classical level in the associated Hamiltonian motion. More

specifically it can be linked to interactions between a
ghostly degree of freedom and one of positive energy, as
one isolated ghost would be stable. There again it is usually
believed that any such interactions would generically lead
to catastrophic trajectories with divergences or runaway
instabilities already at the classical level.
However, there exist scarce studies indicating that

this could be more subtle. Indeed, the well-known
Kolmogorov-Arnold-Moser (KAM) theorem (see, e.g.,
Ref. [26]) opens the way to stable motions in systems
with a specific ghost-positive energy degree of freedom
interaction and a restricted set of initial conditions, so-
called islands of stability [27]. An analytic study of such a
situation has been carried out [28], showing that, for a
specific model, there exist stable motions in the vicinity of
one particular point in phase space. Some numerical works
have reached similar conclusions in a restricted set of
models [22,27,29–31]. On the other hand, Refs. [32,33]
found numerically, for very specific models, stable motions
for all the investigated initial conditions. However, all these
findings are either based on numerical integrations and, as
such, are not fully conclusive (as they cannot cover all the
Hamiltonian trajectories) and/or only yield islands of
stability, and not global stability, all this being true in
addition at best for a very restricted set of interactions.
Here we propose a new look at these issues and present a

large set of models, with a ghost in interaction with a
positive energy degree of freedom, which have stable
classical motions for all initial values. This stability is
proven analytically.
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The model considered here is defined by a particular
interaction potential VIðx; yÞ between a normal harmonic
oscillator x and a ghost oscillator y of the same frequency.
Hence, the total Hamiltonian is

H ¼ 1

2
ðp2

x þ x2Þ − 1

2
ðp2

y þ y2Þ þ VIðx; yÞ; ð1Þ

with VIðx; yÞ given by

VIðx; yÞ ¼ λ½ðx2 − y2 − 1Þ2 þ 4x2�−1=2; ð2Þ

where λ is the coupling constant. The model is well defined
for all values of x and y. Indeed, the expression under the
square root in Eq. (2) is positive definite so that the
interaction potential VI is always smooth and finite. The
total potential energy V tot (see Fig. 1) and the total
Hamiltonian are unbounded from above and from below.
However, the interaction potential VI is bounded as

0 < VIðx; yÞλ−1 ≤ 1: ð3Þ

Expanding the total potential energy in x and y around the
origin yields

V tot ¼
ω2
x

2
x2 −

ω2
y

2
y2 þ λðx4 þ 4y2x2 þ y4Þ þ � � � ; ð4Þ

where the frequencies are corrected by the interaction as

ω2
x ¼ 1 − 2λ; and ω2

y ¼ 1þ 2λ; ð5Þ

and where we neglected an irrelevant constant and terms
of total power higher than 4. Thus, for jλj < 1=2, both
oscillators are linearly stable around the origin. (For
λ > 1=2, the system exhibits tachyonic instability around
the origin, but is locally stable around the saddles of

the total potential at ðx; yÞ ¼ ½�ð ffiffiffiffiffi
2λ

p
− 1Þ1=2; 0�. For

λ < −1=2, on the hand, the system is locally stable around
saddles at ðx; yÞ ¼ ½0;�ð ffiffiffiffiffiffiffiffi

−2λ
p

− 1Þ1=2�.) However, wewill
not here restrict ourselves to motions staying in the vicinity
of some point in phase space, and which could possibly be
described by perturbation theory. Rather we will prove a
stability theorem valid for all initial conditions and
Hamiltonian motions. To that end it is crucial to note that
the model defined by Eqs. (1) and (2) is integrable: in
addition to the conserved Hamiltonian H, it has a first
integral

C ¼ K2 þ ðp2
x þ x2Þ − ðx2 − y2 − 1ÞVIðx; yÞ; ð6Þ

where K ¼ pyxþ pxy is the momentum of hyperbolic
rotations (boosts) in the ðx; yÞ plane. One can explicitly
check that the above quantity C is conserved by the
Hamiltonian motion. However, we also note that the above
model can be obtained from a class of integrable models
obtained by Darboux in 1901 [34] with 2 positive energy
degrees of freedom x and ỹ, using the complex canonical
transformations

y ¼ iỹ; and py ¼ −ip̃y; ð7Þ

which in our case not only preserve the Hamiltonian motion
but also keep bothH and C real. It is useful to introduce the
sum of absolute values of the energies of both oscillators
and the square of K

Σ ¼ ðpyxþ pxyÞ2 þ
1

2
ðp2

x þ x2Þ þ 1

2
ðp2

y þ y2Þ: ð8Þ

Each term in Σ is manifestly non-negative and corresponds
to a first integral of the system [Eq. (1)] without interaction,
i.e., for λ ¼ 0. The distance from a point in the phase space
ξ ¼ ðx; y; px; pyÞ to the origin (the Euclidean norm of the
state) is always bounded: jξj2 ≤ 2Σ. The following differ-
ence E between two integrals of motion is useful:

E ¼ C −H ¼ Σþ ðy2 − x2ÞVIðx; yÞ: ð9Þ

The second term in the last equality is bounded in the stripe

−jλj ≤ ðy2 − x2ÞVIðx; yÞ ≤ jλj: ð10Þ

As a consequence, one gets that at all times

Σ − jλj ≤ E ≤ Σþ jλj: ð11Þ

Applying this inequality at two different times ta and tb,
and using the conservation of E we get that (the index a, b
referring to the corresponding time)

Σa − 2jλj ≤ Σb ≤ Σa þ 2jλj: ð12Þ

x
y

Vtot

FIG. 1. Total potential energy is plotted for coupling constant
λ ¼ 1=3 in the interaction potential [Eq. (2)].
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In particular, the last inequality implies that

jξbj2 ≤ jξaj2 þ 2K2
a þ 4jλj; ð13Þ

using 2Σ ¼ 2K2 þ jξj2 ≥ jξj2. Hence, the motion is con-
fined inside of a sphere whose radius is fixed by the (initial)
data at ta. This completes the proof that the motion of our
system is always bounded and shows no runaway for all
values of the initial data and coupling constant λ. We stress
that this also holds for parameters yielding “tachyonic”
negative ω2

x or/and ω2
y corresponding to an unstable origin.

We now show the result of numerical integration of the
system in Eqs. (1) and (2) with λ ¼ 1=3. The Hamiltonian
equation of motion is directly solved numerically from
the initial time t ¼ 0 to the final time t ¼ 500 with the
initial condition ½xð0Þ; yð0Þ; pxð0Þ; pyð0Þ� ¼ ð2; 1; 0; 0Þ.
Numerical errors in H and C remain of order 10−13.
Figure 2 shows the behaviors of xðtÞ and yðtÞ. Each of
them stably oscillates with some modulation induced by the
interaction between them. Figures 3 and 4 show the
projection of the trajectory onto the xy and ypy planes,
respectively; the color represents the value of t.

Note that the trajectories close to the origin can also be
analyzed more precisely. First of all, from the first inequa-
lity in Eq. (12), one obtains

jξaj2 − 2K2
b − 4jλj ≤ jξbj2: ð14Þ

Close to the origin of the phase space, K2 is higher order
than jξj2 and can be neglected. Thus, in this case, we
conclude that, for 4jλj < jξj2 ≪ 1, the trajectories are
located in the spherical shell which is 4jλj=jξaj thin:

jξaj2 − 4jλj≲ jξbj2 ≲ jξaj2 þ 4jλj;

where we omittedOðjξj4Þ terms. Close to the origin one can
use Eq. (3) to refine Eq. (11), so that for λðy2 − x2Þ < 0

Σþ λðy2 − x2Þ ≤ E ≤ Σ; ð15Þ

while for λðy2 − x2Þ ≥ 0 the limits flip and yield E > 0
(except at the origin). However,

Σþ λðy2− x2Þ ¼K2þ 1

2
ðp2

xþp2
yþω2

xx2þω2
yy2Þ; ð16Þ

where ωx and ωy are given by Eq. (5). For jλj < 1=2 both
ω2
x and ω2

y are positive, which results in E > 0, except at the
origin where E ¼ 0. Thus, E being in addition conserved,
satisfies all requirements of a Lyapunov function and
guarantees the stability of the origin for jλj < 1=2.
A stable (and integrable) motion such as the one

discovered here can of course also be observed for a
system of a ghost noninteracting with a positive energy
degree of freedom. Hence a legitimate question is whether
one could transform the model considered here into such a
system, i.e., find a canonical transformation which kills all
the interactions. One can show, at least order by order, that
this is not possible. To that end one can use a theorem given
in Ref. [26], which in the present context amounts to stating

t0 250 500

x

y

0

2.4

− 2.4

0

1.2

− 1.2

FIG. 2. The plot of xðtÞ and yðtÞ.

FIG. 3. The projection of the trajectory onto the xy plane. The
color represents the value of t.

FIG. 4. The projection of the trajectory onto the ypy plane. The
color represents the value of t.
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that, using the new variables defined by zx ¼ px þ ix and
z̄x ¼ px − ix, any interaction of the form

zαxx z̄βxx z
αy
y z̄

βy
y ð17Þ

can be removed by a suitable canonical transformation
except in the cases where αx ¼ βx and simultaneously
αy ¼ βy. This holds true in the so-called nonresonant case,
which includes the case considered here where the ratio
ωx=ωy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − 2λÞ=ð1þ 2λÞp
is generically irrational. In

our case, it is easy to see that each term x4, x2y2 and y4

appearing at order 4 in the expansion of the potential
Eq. (4) contains one and only one monomial which cannot
be removed, respectively, given by the distinct monomials
z2xz̄2x, zxz̄xzyz̄y, and z2yz̄2y. Hence, we conclude that it is not
possible to fully remove the quartic interaction of our
model via a canonical transformation that keeps the
quadratic part of the Hamiltonian.
We note further that the model considered here and

defined by the Hamiltonian [Eq. (1)] can easily, at least
locally, be rewritten as a higher derivative theory for a
single degree of freedom q. To that end, one inverts the
Ostrogradsky procedure and ends up with an equivalent
Lagrangian L given by (where a dot means a time
derivative)

Lðq; q̈Þ ¼ ðq̈þ qÞ½2p2 þ ð2p2Þ−1�; ð18Þ

where p2 ≡ p2ðq; q̈Þ is a solution of the equation

ðq̈þ qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q2 þ 1

q
¼ −2λp2ð2p2

2 þ 1Þ−3=2 ð19Þ

and is the Legendre conjugate variable to q̈ in the
Lagrangian Lðq; q̈Þ (i.e., one has p2 ¼ ∂L=∂q̈).
Last, we underline that the above model [Eq. (1)] is not

unique. It is part of a larger family of models with the
Hamiltonian H ¼ p2

x=2 − p2
y=2þ V, where

V ¼ aU þ bW þ cUW; ð20Þ

where

U ¼ d − x2 þ y2; W ¼ ðU2 þ 4dx2Þ−1=2; ð21Þ

and a, b, c, d are arbitrary constants satisfying a < 0,
c ≤ 0, and d > 0. These models are all integrable, with a
motion whose stable nature can be proven analytically
along the line above, with a Hamiltonian unbounded below
and above and a ghost coupling to a positive energy degree
of freedom [35].
We have presented an example of classical models where

a subsystem with positive energy unbounded from above
interacts with another subsystem with negative energy
unbounded from below. Yet the dynamics is such that

the negative energy is locked and cannot be exploited to
further increase the positive energy of the other subsystem.
Hence, there are no runaway solutions in the whole phase
space. Moreover, we have shown the Lyapunov stability of
the origin in the model in Eq. (1) (for jλj < 1=2), while our
numerical investigations indicate that such a stability exists
more widely on phase space [35]. Note also that as the
system is integrable, the KAM theorem should allow for the
existence of “islands of stability” for a large class of
nonintegrable interactions around the considered models.
We stress however that the integrability, which plays an
important role in our proof, does not per se guarantee the
absence of runaway solutions [35]. It would be very
interesting to understand the quantum mechanical descrip-
tion of such systems and their generalization to continuum
number of degrees of freedom. Some investigations along
these lines have been made in models with higher derivative
equations of motion opening up the possibility to define in
some cases a sensible associated quantum theory [2,36]. A
crucial property of the system proposed in this Letter is that
the motion is bounded for all initial data. Thus, a wave
function cannot probe any instability contrary to the
systems which are only stable around one point. We leave
a detailed investigation of these issues for a future work.
Incidentally, the work reported here also points out the
existence of a large set of integrable models where ghosts
interact with a positive energy degree of freedom. These
ghostly models can be obtained via known integrable
models with 2 positive energy degrees of freedom and a
complex canonical transformation of the form in Eq. (7)
[35]. To our knowledge, the only previously discussed
example of such an “integrable ghost” (with a total of
2 degrees of freedom) is a very specific model given in
Ref. [36] obtained from a supersymmetric field theory (see
also Ref. [37]).
It seems that invoking interaction with ghosts may be

rather innocent, at least in some cases and at the classical
level. Thus, in these cases, it is not stability which precludes
the existence of ghosts, and it is not unusual that quantiza-
tion improves the stability of a given model rather than
deteriorates it. This is famously the case, e.g., for the Kepler
problem. One then expects to be able to find such stable
interacting ghosts in some natural systems, perhaps as some
low-energy modes or collective coordinates within a
sensible field theory in a wider context than the one
mentioned in the introduction. It is known that unstable
IR ghosts can appear in a simple field theory system such as
a massless canonical scalar field minimally coupled to
general relativity [38]. Why not stable ones?

C. D. thanks A. Smilga and J. Féjoz for discussions.
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