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We characterize operationally meaningful quantum gains in a paradigmatic model of lossless multiple-
phase interferometry and stress the insufficiency of the analysis based solely on the concept of quantum
Fisher information. We show that the advantage of the optimal simultaneous estimation scheme amounts to
a constant factor improvement when compared with schemes where each phase is estimated separately,
which is contrary to widely cited results claiming a better precision scaling in terms of the number of phases
involved.
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Introduction and summary of results.—Quantum met-
rology aims at identifying optimal ways of using quantum
systems as sensing probes [1–9]. When N quantum probes
are used independently, the estimation variance decreases
inversely proportional to the number of probes in accor-
dance with the standard quantum limit (SQL). The hallmark
of quantum metrology is the potential quadratic scaling
improvement over the SQL known as the Heisenberg limit
(HL) [10–20].
In multiple parameter estimation scenarios, simultaneous

estimation of p parameters in a single experiment may
additionally provide an improved performance when com-
pared with strategies where each parameter is estimated
separately [21–27].
A paradigmatic model to study the potential of multi-

parameter quantum enhanced metrological protocols is the
multiple-phase estimation problem. The goal is to estimate
all the relative phase shifts in a multiple-arm interferometer
with the best precision possible given a constraint on the
total number of photons used; see Fig. 1.
The most common tool to analyze the potential of

quantum metrological strategies is the quantum Fisher
information (QFI), the inverse of which lower-bounds
the variance of any locally unbiased estimator θ̃ via the
famous quantum Cramér-Rao (CR) bound [28–30]. In the
single parameter case, the CR bound takes the form

Δ2θ̃ ≥
1

kFðρnθÞ
; ð1Þ

where k is the number of repetitions of an experiment and
FðρnθÞ is the QFI computed on the n-probe output state
on which the parameter θ has been encoded. In the case
of the standard two-arm optical interferometry, a single
relative phase between the two arms is being estimated,
and FðρnθÞ ¼ n for n uncorrelated photons sent into the

interferometer, while the maximum value FðρnθÞ ¼ n2 is
obtained for an optimally entangled state of n photons—the
n00n state—resulting in the 1=n2 Heisenberg scaling (HS)
of precision [5,12–19]. In general, this bound is opera-
tionally saturable provided one takes the asymptotic limit
k → ∞ while keeping the n fixed. Such a case corresponds
to an experimental realization where the amount of resour-
ces used in a single realization is large but limited and the
experiment may be repeated an arbitrary number of times.
However, a fundamental question is what the true HL for

precision will be if the total amount of resources N ¼ n · k
is restricted and the N → ∞ limit is taken. Since the scaling
of precision is quadratic in n and linear in k, the optimal

FIG. 1. Multiple-phase estimation schemes where a constraint
is imposed on the total resources used (left column) or resources
used in a single experiment (right column). The top and bottom
rows represent, respectively, the protocols where all the phases
are measured jointly or the estimation procedure is repeated for
each of the phases separately. The lower bounds for the sum of
variances obtainable within each of (i)–(iv) paradigms is pre-
sented in Table I.
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choice appears to be n ¼ N, k ¼ 1. However, in this case
one cannot use saturability arguments based on the many-
repetition scenario and the predictions of the QFI may be
misleading with respect to the choice of the optimal probe
states as well as the asymptotically achievable precision
limit. This becomes clear when the results are contrasted
with the ones obtained via the minimax [31], Bayesian [32],
or information theoretic approach [33].
The use of a single N00N state (note that the use of N

instead of n is intentional) is clearly not an operationally
meaningful strategy when discussing the HL, as it is not
capable of discriminating phases that differ by a multiple of
2π=N. There is clearly a need to sacrifice part of the
resources to get rid of the arising ambiguity, and this leads
to a π2 increase in the asymptotically saturable bound,
which can be rigorously shown within a Bayesian estima-
tion framework [32,34–39]. Therefore, in order to avoid
confusion, we will introduce a clear distinction between the
two approaches and refer to them as HS in which the
amount of resources used in a single repetition of experi-
ment n is large but finite and the whole experiment may be
repeated k → ∞ times: Δ2θ̃ ∝ 1=kn2, and HL in which the
total amount of resources N is restricted and no repetitions
of an experiment are assumed: Δ2θ̃ ∝ 1=N2.
The two approaches may only be reconciled provided

one is able to properly account for the scaling of the
required number of repetitions k with the increasing
number of probes n used in a single experiment that
guarantees saturability within the HS approach. This is,
however, hardly ever possible and typically the issue is
simply ignored in the literature.
In the multiparameter case, a rigorous study of the

achievable HL is much more challenging and the common
approach is to rather work in the HS paradigm where
efficiently computable multiparameter generalizations of
CR bounds are used [23,27,40–45]. Rigorous analyses of
the actual saturable HL are typically restricted to Bayesian
framework case studies using some underlying group
structure of the problem [46–53]. However, quite surpris-
ingly, the actual analytical form of the asymptotically
saturable HL for the paradigmatic multiple-phase estima-
tion problem is missing (see Ref. [54] for a recent
numerical attempt to tackle the problem).
In this Letter, we employ an operationally meaningful

minimax approach to derive an asymptotically saturable
HL for the multiple-phase estimation problem and dem-
onstrate that it manifests a p3 scaling, with the number of
parameters involved, rather than the p2 that is advocated
when following the HS approach [55]. We also clarify
apparent gains that may be obtained thanks to simultaneous
phase estimation when compared with strategies that
estimate all the phases separately. We show that the
advantage amounts to a constant factor gain and, contrary
to the claims of [55–57], does not lead to a better scaling
of precision with the number of parameters involved.

We explain the apparent contradiction by pointing out
the improper use of saturability arguments that are often
invoked when following the HS approach. (Table I sum-
marizes the main results presented in this Letter.)
Multiple-phase estimation problem.—Consider a multi-

ple-phase estimation problem as depicted in Fig. 1, where
the goal is to estimate the value of p phases θ ¼
½θ1;…; θp�, the relative phase delays in the ith arm of an
interferometer with respect to the reference arm. For a
general n-photon state at the input, the output state with
phase information encoded will have the form

jΨn
θi ¼

X
m∶

P
p
i¼1

mi≤n

cmeim·θjm1; m2;…mpi; ð2Þ

with m ¼ ½m1;…; mp�, where mi represents the number of
photons in the ith “signal” arm, while the remaining
n −

Pp
i¼1 mi photons are sent through the reference arm.

A general quantum measurement is then performed in order
to extract information on the encoded phases, mathematically
specified by a set of positive operators, fMxg,

P
x Mx ¼ 1,

in which x labels a measurement outcome observed with
probability pθðxÞ ¼ hΨn

θjMxjΨn
θi. The measurement out-

comes are then fed into an estimator function that yields
the inferred values of the phases. In scenario (i), the estimator
θ̃ðxÞ is a function of just a single measurement outcome (in
this case n ¼ N as all resources are used in a single shot); in
(ii) the experiment is repeated k times and the estimator is a
function of all k measurement outcomes θ̃ðx1;…; xkÞ; in
(iii) p separate protocols involving p different states (each
containing N=p photons) and different measurements are
performed, yielding measurement outcomes x1;…; xp,
where each outcome xi feeds the estimator of the ith phase

TABLE I. Asymptotically achievable lower bounds on the sum
of variances of estimated phases. The main result presented in this
Letter is the bolded formula representing the proper multiple-
phase Heisenberg limit (HL) and demonstrating the p3 scaling
with the number of estimated phases. All bounds are tight in the
asymptotic limit N → ∞ (or k → ∞), while in the case of joint-
phases estimation tightness requires an additional p → ∞ limit
(c ¼ 1.89 yields a universally valid bound, while c ¼ 2 yields an
asymptotically achievable cost). The SQL column can be
regarded as a special case of the Heisenberg scaling (HS) column
when n ¼ 1 and k ¼ N.

Δ2θ̃ ≥
Independent
probes
SQL

Entangled probes

N ¼ kn probes
HL

n probes, k reps
HS

Single phase 1
N

π2

N2

1
kn2

p phases
jointly

p2

4N
(i) cp3

N2 (ii) p2

4kn2

p phases
separately

p2

N
(iii) π2p3

N2 (iv) p2

kn2
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θ̃iðxiÞ; finally, in (iv) each of the p separate protocols is
repeated k=p times, yielding in total p × ðk=pÞ ¼ k meas-
urement outcomes and resulting in p separate estimators of
each phase θ̃iðx1i ;…; xk=pi Þ, i ∈ f1;…; pg.
Irrespective of which scenario is considered, the figure of

merit to be minimized is the sum of squared errors of
estimated phases:

Δ2θ̃ ¼
Z

dxpθðxÞðθ̃ðxÞ − θÞ2; ð3Þ

where
R
dx formally represents integration over all

(possibly continuous) measurement outcomes and
ðθ̃ðxÞ − θÞ2 ¼ Pp

i¼1ðθ̃iðxÞ − θiÞ2. As this is a pointwise
figure of merit (calculated at a given θ), in order to make the
minimization task meaningful, one needs to impose addi-
tional constraints on the estimator function because other-
wise a trivial solution θ̃ðxÞ ¼ θ yields zero cost.
The most commonly used constraint is the locally unbias-

edness condition, which is also the key assumption behind
the derivation of the CR-type bounds [28–30,45,57]. This
assumption itself may not be sufficient to obtain operationally
saturable bounds, as in principle the region where the use of
the local-unbiased estimator makes sense may shrink when
taking the asymptotic limit N → ∞ [31–33].
Alternatively, one may follow the so-called “minimax”

approach and define a region Θ inside which the true value
of θ is guaranteed to be and then consider the estimator that
gives the best results in the most pessimistic scenario, i.e.,
which minimizes the cost maximized over all θ ∈ Θ:

Δ2θ̃minimax ≡ inf
Mx;θ̃ðxÞ

sup
θ∈Θ

Z
dxpθðxÞðθ̃ðxÞ − θÞ2: ð4Þ

The advantage of the approach is that Θ is fixed while
taking the asymptotic limit N → ∞ and hence no region
shrinking issues arise. We now proceed to derive an
asymptotically saturable lower bound on the above cost
in the most fundamental scenario (i) and then contrast it
with scenarios (ii), (iii), and (iv).
Derivation of the multiple-phase HL.—Below we present

a sketch of the proof. For a more formal derivation, in Sec. A
of the Supplemental Material [58]. First, we consider an
extension of the model by replacing discrete variables mi ∈
f0; 1;…; Ng with continuous ones mi=N → μi ∈ ½0; 1� and
the sums with the respective integrals. Note that such an
extension may only decrease the minimal achievable cost,
as the discrete model may always be arbitrarily well-
approximated as a special case of the continuous model.
The probe state is now characterized by a p-dimensional
wave function fðμÞ:

jΨN
f;θi ¼

Z
∀ μi≥0;

P
i

μi≤1

dμfðμÞeiNμθjμ1; μ2; ::μpi: ð5Þ

Next, as we argue in detail in the SM [58], the asymptotic
bound for any finite region Θ is equivalent, up to the
leading 1=N2 order, to the cost when the region is
unbounded Θ ¼ Rp. In the latter case, the problem is
covariant with respect to the translation group and the
optimal measurement can be restricted to the class of
covariant measurements [29] (thanks to the generalization
of the Hunt-Stein lemma [60,61] for noncompact groups
[52,62,63]) and without loss of generality may be chosen to
be the momentum projection measurement Mθ̃ ¼ jχθ̃ihχ θ̃j,
where

jχ θ̃i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2π=NÞpp Z

dμeiNμθ̃jμi: ð6Þ

Note that we have implicitly replaced the measure-
ment outcomes x with the actual estimated values θ̃.
Minimization of the resulting lower bound over the
probe-state wave function fðθÞ leads to the following
lower bound on the cost Δ2θ̃:

min
f

Z
Rp

dθ̃jhχθ̃jΨN
f;θij2ðθ̃ − θÞ2 ¼ 1

N2
min
f

Z
Rp

dθ̃jf̂ðθ̃Þj2θ̃2;

ð7Þ

where f̂ is the Fourier transform of f and we dropped the
irrelevant dependence on θ. Going back to the μ repre-
sentation, the minimization problem takes the following
form:

1

N2
min
f

Z
∀ μi≥0;

P
i

μi≤1

dμf�ðμÞ
�Xp

k¼1

−∂2
μk

�
fðμÞ;

with
Z

∀ μi≥0;
P
i

μi≤1

dμjfðμÞj2 ¼ 1;

fðμÞ ¼ 0 for μ on the boundary

�
μi ¼ 0∨X

i

μi ¼ 1

�
:

ð8Þ
This problem is therefore equivalent to identifying
the ground state energy of a quantum particle in a
p-dimensional simplex-shaped infinite potential well,
which in general has no known analytical solution (apart
from specific cases [68–70]). Still, it may be easily
bounded from below in following way.
Since the problem enjoys an inherent symmetry with

respect to permuting the p “phase” arms (the reference arm
is distinguished by the choice of the cost function), and the
total number of photons in p “phase” arms is ≤ N, the
expectation value of the number of photons in each single
“phase arm” is ≤ N=p. Now, we will neglect the fact that
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the distribution of photons in each single arm comes from
the multiarm distribution of N photons and keep only the
constraint on the photon expectation value. Such a con-
straint is a weaker one than the original one, but as it refers
just to a single “phase” mode, it allows for an effective
separation of variables. This allows us to lower-bound the
total cost by p times the minimal single-phase estimation
cost given the mean number of photons in the mode N=p:

Δ2θ̃ ≥ p ×
1

N2
min
g

Z
∞

0

dμg�ðμÞ
�
−

∂2

∂μ2
�
gðμÞ ð9Þ

with constraints

gð0Þ¼0;
Z

∞

0

dμjgðμÞj2¼1;
Z

∞

0

dμjgðμÞj2Nμ¼N=p:

ð10Þ

The single mode problem may be solved using the standard
Lagrange multiplier method, and we find the solution gðμÞ
to be the Airy function Aið·Þ (see also [71,72], where the
same solution appeared in a single-phase estimation con-
text), leading to the final bound

Δ2θ̃ ≥
p3

N2

4jA0j3
27

≈
1.89p3

N2
; ð11Þ

where A0 ≈ −2.34 is the first zero of Aið·Þ. The most
important feature of the bound is the p3 scaling. This bound
is valid, even if one considers that the most general adaptive
strategy with arbitrary large ancilla is allowed [58].
Note that an analog reasoning could not be performed to

bound the QFI as the QFI may be arbitrary large when only
the constraint on themean (and not the maximal) number of
photons in the sensing arm is imposed and leads to some
operationally unjustified claims of sub-Heisenberg estima-
tion strategies [73,74], as discussed in [75].
Comparison of different approaches.—When following

the (ii) approach and minimizing the trace of the inverse of
the QFI matrix of the output state, one obtains the following
bound on the total cost arising from the application of the
multiparameter version of the CR bound [55] (see also
Ref. [23] for justification of fundamental optimality):

Δ2θ̃≥
1

k
min
jΨni

Tr½F−1ðjΨn
θiÞ�¼

ð1þ ffiffiffiffi
p

p Þ2p
4kn2

≈
p≫1 p2

4kn2
; ð12Þ

where the optimal input state has the form

jΨni¼βjn;0;…;0iþαðj0;n;…;0iþ���j0;0;…;niÞ ð13Þ

with α ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ffiffiffiffi

p
pp

, β ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffi

p
pp

. The most visi-
ble difference between the two approaches is the scaling of
the cost with the number of parameters estimated, p3 in
(i) vs p2 in (ii). In order to avoid contradiction, this implies

that when considering k repetitions in the (ii) scenario, the
actual number of repetitions required to saturate the CR
bound will in fact need to increase at least linearly with p.
This fact lies at the heart of the discrepancy between the
claims of Ref. [55] and ours. Interestingly, when consid-
ering the Gaussian states only, the QFI based study [76]
yields results qualitatively equivalent to ours (p3 cost
scaling for both joint and separate strategies), which should
be attributed to the fact that the saturability of the CR-type
bounds in Gaussian models is guaranteed already at the
single shot level without invoking the multiple repetition
argument [29,45].
In scenario (iii), one separately sendsN=p photons states

into the ith and the reference arm in order to measure a
given θi phase, using the optimal state for sensing a single
completely unknown phase [34–36]:

jΨN=p
i i¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N=pþ2

s XN=p

m¼0

sin

�ðmþ1Þπ
N=pþ2

�
jN=p−mi0jmii;

ð14Þ
where jN=p −mi0jmii denotes a state where m photons is
sent into the ith arm and N=p −m into the reference arm.
The resulting bound on the total variance is therefore lower-
bounded by p times the single-phase estimation variance
[34–36]:

Δ2θ̃ ≳N=p≫1

p ×
π2

ðN=pÞ2 ¼
p3π2

N2
: ð15Þ

We see the same scaling as in the joint-phase estimation
protocol (i), which implies that the largest possible gain
coming from joint-phase estimation amounts to a constant
factor ≤ π2=1.89. In order to show that the gain over the
separate strategy is indeed achievable, we need to find a
state wave function fðμÞ that manifests an advantage over
the separate strategy when plugged into the joint estimation
cost formula Eq. (8). We propose a simple ansatz for the
structure of the state that satisfies the boundary conditions:

fðμÞ ∝
�Yp

i¼1

μi

�α�
1 −

Xp
i¼1

μi

�β

: ð16Þ

The minimal cost

Δ2θ̃ ¼ pð1þ 2
ffiffiffiffi
p

p Þ2 ffiffiffiffi
p

p ð4pþ 2
ffiffiffiffi
p

p − 1Þ
ð8 ffiffiffiffi

p
p − 4ÞN2

≈
p≫1 2p3

N2
ð17Þ

is obtained for α ¼ 3=2, β ¼ ffiffiffiffi
p

p
. For large p, the cost

approaches closely the fundamental bound (2 vs 1.89
coefficient), demonstrating that the π2=2 ≈ 4.93 advantage
of joint-phase estimation over separate strategies is achi-
evable. Note that although this result was obtained for the
problem with continuous variables μi, it may be arbitrarily
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well approximated within the original discrete model
Eq. (2) with increasing N (in the same spirit as discussed
in [67] for the single parameter case). See Sec. B of the
Supplemental Material [58] for the details of computation,
more discussion on the structure of the state, and a
numerical investigation of the convergence of the discrete
model to the continuous one when N is being increased.
Finally, the optimal strategy in (iv) is to use subsequently

p n00n states:

jΨn
i i ¼

1ffiffiffi
2

p ðj0i0jnii þ jni0j0iiÞ; ð18Þ

where each state is designed to sense the ith phase
optimally. Since the total number of repetitions is k, each
phase will be sensed k=p times and hence the final cost
resulting from the application of the CR bound reads

Δ2θ̃ ≥ p ×
1

k=p
×

1

n2
¼ p2

kn2
: ð19Þ

Comparing this result with Eq. (12), we see that joint-
phase estimation offers again just a constant factor
improvement over separate strategies. This result is
different from the claims of [55], where a scaling
improvement (p2 vs p3) was claimed. Indeed, if n=p
photons were used in a single-phase estimation experi-
ment instead of considering k=p uses of the n-photon
state, one would obtain the bound on the cost in the form
Δ2θ̃ ≥ p × 1=k × 1=ðn=pÞ2 ¼ p3=kn2. This latter calcu-
lation, however, does not reflect the cost of the optimal
separate strategy in the framework in which there is some
fixed number of photons n used in a single experiment
and the experiment is repeated k times. The optimal
strategy is captured by the former reasoning, leading to
the p2 scaling, as we can always regard this strategy as an
equivalent k repetitions of an experiment using a mixed
state ρn ¼ ð1=pÞPp

i¼1 jΨn
i ihΨn

i j, where the factor ð1=pÞ
in formula for ρn expresses the fact that in each repetition
we measure only one parameter with equal probability for
each of them. Effectively, k=p repetition for each param-
eter is performed with n resources each time.
Conclusions and discussion.—In this Letter, we have

clarified the relation between formulas for the optimal cost
in multiple-phase interferometry obtained within different
paradigms involving either fixing the total resources used
or the resources used in a single experiment. Doing so, we
have shown that within both paradigms joint-phase esti-
mation leads to at most a constant factor improvement over
the optimal separate strategies. This constant factor
improvement may be attributed to the fact that in the limit
of many phases being sensed, the number of photons that
need to be sent into the reference arm becomes negligible
compared with the total number of photons used, whereas
in the separate strategy it effectively consumes half of the
resources available [58]. This claim remains valid also in

the lossy optical interferometry case (where, however, HS
does not occur) as shown in [77].
Note that similar issues regarding the apparent scaling

advantage of joint vs separate parameter estimation may
arise in other multiparameter estimation problems [22,23]
and in order to arrive at operationally meaningful con-
clusions, one should avoid implicit switching between the
(i)–(iv) paradigms and be aware of nontrivial saturability
issues when following the QFI based approach.
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