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We study the role of bath-induced correlations in temperature estimation of cold bosonic baths. Our
protocol includes multiple probes, that are not interacting, nor are they initially correlated to each other.
They interact with a bosonic sample and reach a nonthermal steady state, which is measured to estimate the
temperature of the sample. It is well known that in the steady state such noninteracting probes may get
correlated to each other and even entangled. Nonetheless, the impact of these correlations in metrology has
not been deeply investigated yet. Here, we examine their role for thermometry of cold bosonic gases and
show that, although being classical, bath-induced correlations can lead to significant enhancement of
precision for thermometry. The improvement is especially important at low temperatures, where attaining
high precision thermometry is particularly demanding. The proposed thermometry scheme does not require
any precise dynamical control of the probes and tuning the parameters and is robust to noise in initial
preparation, as it is built upon the steady state generated by the natural dissipative dynamics of the system.
Therefore, our results put forward new possibilities in thermometry at low temperatures, of relevance, for
instance, in cold gases and Bose-Einstein condensates.
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Introduction.—Achieving extremely low temperatures is
a must for quantum simulation and computation in many
platforms. In order to fully characterize any system that
works for such tasks, aside from tunable parameters one has
to estimate the nontunable ones as well. Although these
parameters vary depending on the platform, temperature is
common among almost all, because thermal states naturally
appear in many physical systems. Even if that is not the
case, the statistics of subsystems of a quantum system often
behave as if the quantum system was at thermal equilibrium
[1–3]. Therefore, thermometry is a major focus of much
theoretical and experimental research carried out in quan-
tum systems [4–23].
Since quantum systems, especially when made of many

constituents, are fragile andcostly toprepare, theusageof small
systems as probes is an essential method for nondestructively
measuring their parameters [24]. As such, individual quantum
probes for thermometry have been studied in several scenarios
[9,25,26] and their usefulness was recently demonstrated

experimentally in ultracold gases [27]. When the probe
thermalizes with the sample, universal results can be obtained
thanks to the Gibbs ensemble, that connects thermometry
precision to the heat capacity [6,8]. At very low temperatures,
however, quantum probes do not thermalize with the sample;
they rather reach a nonthermal steady state (NTSS) [28], which
is generally model dependent [26,32]. Thermometry at low
temperatures is timely and challenging. It has been shown that
for thermal equilibrium probes, the error diverges exponen-
tially asT → 0 [6,8]. Thusmany attempts have been dedicated
to overcome this limitation. In particular, when the probes are
not at thermal equilibrium, it was shown that instead of
exponential one can achieve a polynomial divergence
[11,22,23,26]; still the error can be very large. Our work is
thus motivated by these challenges, specifically regarding
experimentally relevant bosonic models that describe impurity
based thermometry of ultracold gases.
Most of the major experimental thermometry protocols

that address ultracold gases use the time-of-flight absorp-
tion technique, which can be very precise, but is often
destructive [33–35]. Nonetheless, there are some experi-
ments in which an impurity is used as a probe. This
impurity can be made up of multiple atoms that simulta-
neously interact with the system. They have been exten-
sively studied and experimentally realized in both bosonic
and fermionic gases [25,36–52].
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It is well known that a quantum bath or sample can create
correlations, and sometimes entanglement, among subsys-
tems of a probe that interact with it. This can be the case
even if the probes are initially uncorrelated and/or if they do
not interact directly with one another. We call this phe-
nomenon bath-induced correlations. In the past few years,
several theoretical works have reported bath-induced cor-
relations or entanglement at NTSS of different platforms
including bosonic and fermionic environments [53–58] and
even realized them experimentally [59]. However, to our
knowledge, the use of such correlations to estimate the bath
parameters has not been studied.
The main goal of our work is to analyze the thermometry

of bosonic systems when using multiparticle probes and
investigate the impact of bath-induced correlations in
precision thermometry. We show that although entangle-
ment—quantified by negativity—is absent, yet bath-
induced correlations help significantly improving the
precision of thermometry and in some cases leading to 2
orders of magnitude increase in the quantum Fisher
information. These results can be used to address and
improve nondemolition thermometry of Bose-Einstein
condensates (BECs) in the nK and sub-nK domain aligned
with previous efforts in characterizing correlations in
BECs [58].
The setup and the model.—We consider a sample (bath)

of bosonic harmonic oscillators. It is in a thermal state, and
our aim is to estimate its temperature T by bringing it in
contact with an external probe. After sufficiently long
interaction among the probe and the sample, the probe
relaxes to its NTSS. Measurements are carried out solely on
the probe, hence realizing a nondemolition measurement on
the sample. Figure 1 illustrates the scenarios that we address
here: (a) The independent-bath scenario, where no correla-
tions are created among different oscillators as they lie in
separate parts of the bath. (More precisely, we define this
scenario as the case where the interprobe distances are larger
than the correlation length of the bath.) This is our reference
scenario. Any situation in which one invokes the thermal-
ization assumption can be analyzed within this framework.
(b) A more realistic scenario, where all of the probes are
embedded in the same bath. If we increase the distance
among neighboring probes, we expect to revive (a).
Otherwise, this scenario gives rise to correlations among
different oscillators—see below.This implies that using (a) to
describe realistic protocols can lead to significant miscalcu-
lation of the thermometry precision. Moreover, while the
thermometry precision in the independent-bath scenario
(a) is additive, the correlations that appear in the common
bath scenario (b) can lead to superadditive precision for
thermometry giving rise to a significant enhancement.
Let us introduce details of the model and sketch how to

exactly solve for the probe’s NTSS (more details are
provided in the Supplemental Material [60]; see also
Refs. [26,61–63]). The total Hamiltonian reads

H ¼ Hp þHB þHPB; ð1Þ

where the Hamiltonian of the 1D probe (see Ref. [57] for
extension to higher dimensions) is

HP ¼
XN
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with xi being the displacement from equilibrium position ri
of the ith probe oscillator and pi being the conjugate
momentum. For now we allow for interoscillator inter-
actions with couplings gij, but to study only bath-induced
correlations we set gij ¼ 0 in simulations. The Hamiltonian
of the bath reads

HB ¼
X

k

q2k
2mk

þ 1

2
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k

mkω
2
ky

2
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being yk and qk the position and momentum of the bath
mode with the wave vector k. Generally, HB could be an
interacting model, however, if the interaction is quadratic,
one can always bring it to the form (3) by finding its normal
modes (e.g., see the 1D BECs studied in Refs. [9,64]).
Finally, we consider a probe-bath interaction of the form

HPB ¼
XN

i¼1

X

k

Gkxi

�
yk cos kri þ

qk
mkωk

sin kri

�
; ð4Þ

which is valid under the long wave approximation, where
the wavelength of the bath excitations is much larger that

(a)

(b)

FIG. 1. Schematic of the thermometry protocols. (a) Indepen-
dent baths: each thermometer is in contact with a separate bath,
thus no correlations are built among them. Hence, the precision is
additive. (b) Common bath—focus of this work: all thermometers
are in contact with the same bath. The ith and the jth thermom-
eters have a distance rij, they do not interact with each other nor
do they share initial correlations, yet they get correlated thanks to
their interactions with the common bath. Our results show that
such correlations might lead to superadditive precision at low
temperatures. The two scenarios are equivalent when the distance
between the probes is very large or at high temperatures.
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the displacement of the oscillators from equilibrium, i.e.,
jkxij ≪ 1 (see, e.g., Ref. [54]).
Equation (1) is quadratic, thus the dynamics is Gaussian

and the NTSS will be Gaussian too. The NTSS does not
depend on the initial state of the probe, it only depends on the
total Hamiltonian, as well as the initial state of the bath,
which we choose to be thermal at (unknown) temperature T.
Since the NTSS is Gaussian, we only need the first and
second order correlations—that is, the displacement vector
and the covariance matrix, respectively—to fully describe it.
If we define R ¼ ðx1; p1;…; xN; pNÞT , then the displace-
ment vector is a 2N dimensional vector with elements di ¼
hRii while the covariance matrix is a 2N × 2N symmetric
matrix with elements Γij ¼ hfRi; Rjgi=2 − hRiihRji.
The conventional method of finding d and Γ starts by

using the Heisenberg equations of motion—that for any
observableO reads _O ¼ i½H;O�. Applying to all degrees of
freedom gives

_xi ¼
pi

mi
; ð5Þ

_yk ¼
qk
mk

þ
XN

i¼1

Gk

mkωk
xi sin kri; ð6Þ

_pi ¼ −miω
2
i xi −

X

j≠i
gijxj

−
X

k

Gk

�
yk cos kri þ

qk
mkωk

sin kri

�
; ð7Þ

_qk ¼ −mkω
2
kyk −

XN

i¼1

Gkxi cos kri: ð8Þ

Solving these equations for the probe degrees of freedom
gives the quantum Langevin equations of motion (see the
Supplemental Material [60] and Refs. [62,65,66])

miẍi þmiω
2
i xi þ

XN

j¼1

gijxj −
XN

j¼1

χij⋆xj ¼ Fi; ð9Þ

where ⋆ stands for convolution. Here, the susceptibility
matrix reads

χijðtÞ ¼
X

k

G2
k

mkωk
sinðωktþ krijÞΘðtÞ; ð10Þ

where we define rij ≔ ri − rj, and the step function ΘðtÞ
imposes causality. The susceptibility matrix is responsible
for both memory effects—through the convolution—and
correlations among the probes, even if gij ¼ 0. Finally, the
vector of Brownian forces reads

FiðtÞ ¼ −
X

k

Gk

�
ykðt0Þ cos ðωkðt − t0Þ þ kriÞ

þ qkðt0Þ
mkωk

sin ðωkðt − t0Þ þ kriÞ
�
: ð11Þ

The solution of (9) depends on the probe-bath interaction,
and the particular spectral density describing it. The latter is
a matrix with the elements

JijðωÞ ¼
X

k

πG2
k

2mkωk
cosðkrijÞδðω − ωkÞ: ð12Þ

In what follows we consider a 1D bosonic bath with linear
dispersion k ¼ ωk=c, where c denotes speed of sound. This
corresponds to an Ohmic spectral density [60,67,68]

JijðωÞ ¼ γ2ω
Ω2

ω2 þΩ2
cos

ωjrijj
c

; ð13Þ

with γ the probe-Bath interaction strength and Ω the cutoff
frequency. We exactly solve Eq. (9) and characterize the
steady state by finding d and Γ. First, we find that d ¼ 0.
Second, if ΓðaÞðTÞ and ΓðbÞðTÞ are the temperature depen-
dent covariance matrices in scenarios (a) and (b), respec-
tively, we observe a major difference in their correlations:
While in (a) we have an uncorrelated state with

ΓðaÞðTÞ ¼⊕i σ
ðaÞ
i ðTÞ—σðαÞi ðTÞ being the local covariance

matrix of the ith probe in scenario α ∈ fa; bg—this is not
the case for (b), in which interoscillator correlations appear.
These correlations disappear at large distance, and/or at
high temperatures. Nonetheless, at low temperature
regimes, and small distances they can be significant—
see Ref. [60] for details—and are responsible for enhanced
thermometry precision. Interestingly, we find out that
entanglement negativity, for arbitrary bipartitions, is zero.
Nonetheless, classical correlations are present in the
common bath scenario and we show below that this major
difference in the correlation structure significantly enhan-
ces thermometry precision.
Metrology in Gaussian quantum systems.—We are deal-

ing with parameter estimation in bosonic Gaussian quan-
tum systems. Let ΓðλÞ be the covariance matrix of a
Gaussian quantum system. Here, λ is to be estimated,
which can be temperature or any other parameter. We drop
the parameter dependence of the covariance matrix to have
a lighter notation, and restrict ourselves to scenarios with
d ¼ 0, as is the case in our problem.
For a given measurement, with the measurement oper-

ator set fΠsðoÞg—where s labels the specific measurement,
and o denotes different outcomes which can be continuous
or discrete—the error on estimation of λ is bounded from
below by [69]
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δλðsÞ ≥ 1

ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F clðλ; sÞ

p ≥
1

ν
ffiffiffiffiffiffiffiffiffiffiffiffiffi
FQðλÞ

p ≕ δλmin; ð14Þ

where ν is the number of measurements, andF clðλ; sÞ is the
classical Fisher information (CFI) associated with the
performed measurement defined as

F clðλ; sÞ ≔ h½∂λ logpðojs; λÞ�2ipðojs;λÞ: ð15Þ

Here, pðojs; λÞ is the conditional probability of observing o
given the parameter has the value λ and the measurement s
is performed. The quantity FQðλÞ ≔ maxsF clðλ; sÞ is the
quantum Fisher information (QFI) that is obtained by
maximizing the CFI over all measurements and thus is
independent of s. The first inequality in Eq. (14) is called
the Cramer-Rao bound, which can be saturated by suitable
postprocessing of the outcomes. Thus, CFI can be a
precision quantifier for a given measurement. The second
inequality is the quantum Cramer-Rao bound that sets a
fundamental lower bound on the error, regardless of the
measurement. Importantly, this bound can be also satu-
rated, by definition of the QFI.
Finding the optimal measurement and the QFI is

challenging and requires different approaches depending
on the platform, the underlying dynamics, and the specific
parameter to be estimated. Nonetheless, for Gaussian
systems, one can routinely find them [60,70–74]. In
Ref. [60] we show that the optimal measurement is given
by a linear combination of second order quadratures, which
is highly nonlocal and experimentally demanding. Thus we
also examine practically feasible alternatives, namely, local
position and momentum measurements defined as X ¼
⊗N

i¼1 xi and P ¼⊗N
i¼1 pi, respectively. These belong to the

family of Gaussian measurements—i.e., when measuring
Gaussian systems their outcomes are Gaussian distributed
—for which the CFI is straightforwardly calculable
[60,70,74]. Despite being suboptimal measurements, they
can benefit from the enhancement, which puts forward an
experimentally realizable scheme to significantly enhanc-
ing thermometry of bosonic systems.
Enhanced thermometry with bath-induced

correlations.—We study the single shot (ν ¼ 1) relative
error δTmin=T for a variety of parameters. Figure 2 illus-
trates δTmin=T versus temperature for various probe-bath
couplings. For both scenarios (a) and (b), we observe that at
high temperatures δTmin=T increases by increasing the
coupling, whereas at low temperatures the opposite is
observed. This unifies the findings of Refs. [9] and [26],
and extends them from the single to the multiprobe
scenario. Furthermore, Fig. 2 shows that at lower temper-
atures and for a fixed coupling, the scenario (b) always
outperforms (a). To see this more clearly, we fix the
coupling, and depict the normalized error

ffiffiffiffi
N

p
δTmin=T in

Fig. 3. At small temperatures, we observe that in scenario
(b) the normalized error reduces by increasing the number

of probes and thus significantly outperforming scenario (a).
By increasing T, the enhancement is progressively
lost and even the scenario (a) might become slightly better.
At even higher temperatures, the probes thermalize
with the bath, and the two scenarios become equivalent
as expected.
In Fig. 4 we fix the temperature in the low-temperature

limit, and depict the QFI versus the number of oscillators.
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100
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FIG. 2. Minimum relative error [δTmin=T from r.h.s of Eq. (14)]
against temperature for different system-bath couplings γ (quan-
titative description in the Supplemental Material [60]) for a fixed
number of oscillators. The solid curves represent the common
bath scenario (b), whereas the dashed lines are obtained consid-
ering independent baths scenario (a). We see that at low temper-
atures by increasing γ the error reduces, whereas at higher
temperatures the opposite holds (not shown). Moreover, embed-
ding the oscillators at the same bath can significantly decrease the
relative error. Here, we set the parameters to ω0 ¼ 1 in arbitrary
units, ωi ¼ ω0 ∀ i, r21=cω0 ¼ 0.1, Ω ¼ 100ω0, gij ¼ 0,
and N ¼ 10.
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FIG. 3. Minimum relative error normalized by the number of
oscillators (that is

ffiffiffiffi
N

p
δTmin=T), as a function of temperature, in

the independent baths scenario (a) for arbitrary N (dashed black)
and in the common bath scenario (b): for different number of
oscillators N ¼ 1 (also dashed black), N ¼ 5 (solid black),
N ¼ 10 (solid blue), and N ¼ 15 (solid red). Unlike the scenario
(a) which is additive, the scenario (b) is superadditive, as the
normalized error reduces by increasing N. The parameters are set
to ω0 ¼ 1 in arbitrary units, and ωi ¼ ω0 ∀ i, r21=cω0 ¼ 0.1,
Ω ¼ 100ω0, gij ¼ 0, and γ ¼ ffiffiffiffiffiffi

ω0

p
.
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The slope of the QFI in the common bath scenario (b) is
clearly larger than scenario (a). For 1 < N < 30, on
average, FQðTÞ ∝ N2.5. However, as seen from the inset,
the slope decreases for larger N and it reaches N1.1 for
N ≈ 80. Nonetheless, for N ≥ 30 we see at least 2 orders of
magnitude growth in the QFI due to the bath-induced
correlations. It is worth mentioning that in the literature
there are few works that study the role of correlations for
thermometry in dynamical scenarios [15,16] that might
need high degrees of control; but to our knowledge this is
the first time bath-induced correlations at NTSS are
exploited for thermometry—and even other metrological
tasks. What is more interesting is that the entanglement, as
characterized by logarithmic negativity, is zero among any
possible bipartition, hence, the enhancement is not due to
quantum correlations.
Generally, the optimal measurement can be highly

nonlocal. This is indeed the case for our common bath
scenario (b); see the Supplemental Material [60] where we
also cite Refs. [75–77]. For experimental purposes we also
find simple local measurements that exploit the bath-
induced correlations for enhanced thermometry at low
temperatures. Particularly, we examine the CFI of local
position and momentum measurements (only position
measurement is shown here.) The result is depicted in
Fig. 4. Although being suboptimal, the precision is

superadditive and is better than the QFI of scenario
(a) already for N ≥ 2, demonstrating the advantage of
exploiting bath-induced correlations even with local
Gaussian measurements.
Discussion.—We showed that bath-induced correlations

present in the steady state of thermometers can play a
prominent role in thermometry of bosonic baths at low
temperatures, which is where precision thermometry is
known to be most demanding. Although these correlations
are not of a quantum nature, they can increase the
thermometry precision up to 2 orders of magnitude, for
both optimal and experimentally feasible measurements. In
our scheme, neither preparation of highly entangled states,
nor dynamical control is required—compared to alternative
dynamical based proposals [15,16,18,25]—which makes
them very appealing. Unfortunately, unlike typical phase
estimation problems, the steady state depends on the
temperature nontrivially. This makes it challenging to
pinpoint the intrinsic properties of the bath and the steady
state that intensify the impact of correlations in thermom-
etry precision. Therefore, an interesting future direction is
to consider properties of covariance matrices and their
temperature dependence (regardless of any physical model
in the background) that leads to such improvements. It
would be also interesting to investigate other spectral
densities—corresponding to physically relevant models,
e.g., with alternative spacial dimension and trapping
potential—and see whether or how they affect the impact
of the common bath on thermometry precision. Bath-
induced correlations for thermometry might be examined
in several experimental setups e.g., Refs. [13,37,42,78–80]
and possibly explored in fermionic platforms [36,81–83].
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