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We present a numerical strategy to efficiently estimate bipartite entanglement measures, and in particular
the entanglement of formation, for many-body quantum systems on a lattice. Our approach exploits the tree
tensor operator tensor network Ansatz, a positive loopless representation for density matrices which, as we
demonstrate, efficiently encodes information on bipartite entanglement, enabling the upscaling of
entanglement estimation. Employing this technique, we observe a finite-size scaling law for the
entanglement of formation in 1D critical lattice models at finite temperature for up to 128 spins, extending
to mixed states the scaling law for the entanglement entropy.
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Quantum entanglement, correlations uniquely present in
quantum systems [1], lies at the heart of the second
quantum revolution. It is a fundamental resource in the
development of present and future quantum technologies
[2], and it drives the collective physics of many-body
quantum systems at low temperatures [3,4]. The ability to
characterize and quantify entanglement in a quantum state
is thus crucial. However, even the simplest entanglement
characterization, bipartite entanglement—quantifying the
mutual quantum correlations between two subsystems—is
well understood only when the state of the joint subsystems
is a pure quantum state. This is mostly due to the fact that
the estimation strategies for entanglement of mixed states
call for minimizations in spaces that scales exponentially
with the number of constituents of the system, and thus are
effectively limited to small-sized systems [5,6]. In this
Letter, we show how tensor network (TN) techniques can
tackle this challenge, and efficiently estimate the entangle-
ment of formation (EOF) [7]—the convex-roof extension of
the von Neumann entropy—of many-body quantum states.
As first application of this approach, we show that for
critical one-dimensional systems the EOF obeys a (loga-
rithmic) finite-size conformal scaling law, for temperatures
commensurate with the energy gap.
For pure states, the connection between bipartite entan-

glement and the effective entropy of either subsystem has
been largely established, and is typically expressed in terms
of von Neumann (S) or Rényi entropies [7–10]. While
challenging to measure in an experiment [11], these
estimators are often accessible in numerical simulations
of many-body quantum systems, and especially in loop-
less tensor network Ansatz states, where the calculation

complexity scales polynomially with the system size [12–
16]. Conversely, for mixed global quantum states, the
problem of characterizing and quantifying bipartite entan-
glement is much more involved, both conceptually and
technically. It is nevertheless a fundamental goal, since any
realistic quantum platform faces imperfections, statistical
errors, and/or imperfect isolation leading to finite temper-
atures. From a conceptual standpoint, a major focus is to
assess which of the entanglement monotones proposed over
the years satisfy the desired properties of entanglement
measures [8]. At a technical level, the core problem
is to efficiently estimate these entanglement quantifiers.
Even those that can be evaluated by linear algebra oper-
ations, such as negativity [17] and quantitative witnesses
[18,19], are exponentially expensive in the system size.
Additionally, many important monotones with a clear
physical significance, in terms of resource and information
theory, are convex-roof extensions of pure-state entangle-
ment measures [7]. Estimating these monotones is a hard
nonlinear minimization problem over pure-state decompo-
sitions of the global densitymatrix [20–26], severely limited
to small system sizes.
The key point of our strategy is to exploit TN com-

pressing capabilities and the exploitation of the tree tensor
operator (TTO) structure to represent a density matrix ρ
(Fig. 1) [12–16,27,28]. This TN Ansatz guarantees posi-
tivity of ρ, and being loopless it is efficiently contractible.
Moreover, it is a natural TN geometry for estimating
bipartite entanglement measures: as discussed below, the
information about bipartite entanglement is compressed
into a single tensor, ultimately simplifying the complexity
of the minimization problem. We demonstrate this method
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effectiveness computing the EOF of thermal many-body
quantum states of the 1D transverse-field Ising and XXZ
models.
Tree tensor operator Ansatz.—As positive operators,

density matrices ρ ¼ P
j pjjψ jihψ jj can be written as ρ ¼

XX†, where the rectangular matrix X ¼ P
j

ffiffiffiffiffipj
p jψ jihjj has

a number of columns equal to the rank of ρ, also known as
the Kraus dimension K0. For many-body quantum states at
low temperatures, probabilities pj decay sufficiently fast
that it is possible to approximate ρ using a K0 that scales at
most polynomiallywith the system sizeN. Therefore, from a
numerical viewpoint, it is meaningful to represent X with a
tree tensor network as shown in Fig. 1: the lower open links
(“leaves,” each of dimension d) represent the physical sites,
while the upper open link (“root,” of dimension K0)
represents the Kraus space of the global purification. As
for other tensor network Ansätze, this representation
becomes efficient when the connecting links, or “branches,”
carry an effective dimensionM that also scales polynomially
with N [16,27,29].
By construction, the TTO Ansatz guarantees positivity

of ρ, in contrast to the matrix product density operator
Ansatz [30,31], whose positivity can be checked only as an
NP-hard problem [32]. Locally purified tensor networks
[33] also preserve positivity, but the presence of loops in
their network geometry leads to numerical limitations when
implementing optimization strategies [34,35]. The TTO is
instead positive and loopless thus encompassing the best of

the two words without any drawbacks. When the TTO is
properly isometrized to the root tensor, via (efficient)
TN gauge transformations [16], all the information about
the mixing probabilities pj ends up stored within that
tensor. Thus, also information about global entropies
(von Neumann S ¼ −

P
pj logpj and Rényi Sα ¼ ð1−

αÞ−1 logPj p
α
j , including the purity). Moreover, all the

information on bipartite entanglement (for a half-half system
bipartition) is contained only in the root tensor. Indeed, the
action of the isometrized branches is actually an invertible
LOCC (operation achievable via local operations and
classical communication), and entanglement monotones
cannot increase under such transformations [8]. In conclu-
sion, compressing the relevant information into a tensorwith
polynomially scaling dimension, it is possible to efficiently
estimate entanglement monotones by processing only the
root tensor, even for complex measures that rely on convex-
roof extensions. Below, we specialize this procedure to the
specific case of the EOF.
EOF estimation.—The EOF of a mixed quantum state ρ,

defined as [7]

EFðρÞ ¼ inf
fpj;ψjg

�X

j

pjSðjψ jiÞ∶ρ ¼
X

j

pjjψ jihψ jj
�
;

quantifies the number of Bell pairs needed to construct a
certain number of copies of ρ via LOCC. The minimization
runs over all possible decompositions of ρ as a convex
mixture of pure states jψni, with probabilities pn. It is
straightforward to recast the previous expression in terms of
the matrix X, whose columns ffiffiffiffiffipj

p jψ ji represent one possi-
ble pure-state decomposition of ρ. Via the Schrödinger-
HJW theorem [36,37], it is possible to obtain the whole set
of X0 matrices representing ρ, and thus all possible pure-
state decompositions. This is done by multiplying X0 ¼
XU, where U is any right isometry (a semiunitary matrix
satisfying UU† ¼ 1) of dimension K0 × K, with K ≥ K0.
The minimization problem then becomes a minimization
over the space of right isometries U, precisely

EFðρÞ ¼ min
K≥K0

inf
U

�XK

j¼1

pjSðjψ 0
jiÞ∶X0 ¼ XU

�
; ð1Þ

where the columns of X0 represent the new pure-state de-
composition of ρ, with wave functions jψ 0

ji¼X0jjiðp0
jÞ−1=2

and probabilities p0
j ¼ hjjX0†X0jji.

As depicted in Fig. 1(a), the X matrix composing the
isometrized TTO can be written as X ¼ ðVL ⊗ VRÞR,
where R is the root tensor, and the branches V⋆ are left
isometries (V†⋆V⋆ ¼ 1). It follows that the columns of R
must have the same entanglement entropy S of the columns
of X, and clearly the same probabilities p0

j. Thus, Eq. (1)

(a) (b)

(c)

FIG. 1. (a) The tree tensor operator (TTO) representing a
density matrix ρ ¼ XX†. K0 is the number of pure states in
the representation used, whileM is the maximal dimension for all
bonds. The gray dashed square highlights the root tensor R,
containing all the information about entanglement between the
red and green bipartitions of the physical space. (b) Change of
representation for the EOF minimization using R, after having
compressed the state with some maximal bond dimension M.
(c) Same as (b), but without compression, so that M ¼ dN=2.
Optimizations are possible for any system size and state that can
be efficiently represented as TTOs.
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can be more efficiently computed by replacing X with the
smaller root tensor R.
Numerical simulation.—Hereafter, we estimate the EOF

of low-temperature many-body states of 1D quantum lattice
models H via TTO. The first step is to approximate the
many-body density matrix as a TTO Ansatz. That is,
writing X ¼ ð1= ffiffiffiffi

Z
p ÞPK0

j e−Ej=2T jψ jihjj in tensor network
format as it appears in Fig. 1, where Ej is the energy of the
Hamiltonian eigenstate jψ ji and Z ensures normalization
Tr½XX†� ¼ 1. In this work, we achieve this goal with either
of the two following methods: (i) Energy eigenstates jψ ji
are obtained via exact diagonalization (ED). Thus X is
calculated exactly, for a givenK0, and then compressed into
a TTO as detailed in Supplemental Material (SM) [38].
(ii) jψ ji are obtained via a tree-tensor network algorithm
capable of targeting each of the K0 lowest energy eigen-
states [40]. Their collected information is then easily
formatted into a TTO with standard tensor network
operations [16]. The accuracy of this second approximate
method is benchmarked against the exact one for thermal
states of small size in SM [38]. Beyond these two strategies,
we envision the possibility to develop algorithms that
directly compute the TTO for finite-temperature quantum
states, capture Markovian real-time evolution, or transform
other TN states into TTOs [50,51].
Once the TTO is built, we proceed to calculate the

optimization from Eq. (1) on the top tensor R. To build sets
of U matrices, we fix a value for K ≥ K0 and parametrize a
Hermitian matrix A ¼ A† of dimensions K × K. Then, we
get the corresponding unitary from U ¼ expfiAg, and
finally we take K0 random rows of U to build U. For
every column of R0 ¼ RU, its entanglement entropy is
calculated via S ¼ −

P
i s

2
i log s

2
i , where the singular

values si are obtained by a singular value decomposition
(SVD). In the results section, entropies are expressed in
basis of log2, so that a Bell pair defines the unit of
entanglement. For a given K ≥ K0, minimization in the
space of the U is carried out via direct search methods, but
other choices are possible. Extensive proofs of the stability
of this method, as well as some results on many-body
random density matrices, are provided in SM [38].
Convergence of the minima is rapidly reached when
increasing K ≥ K0. For all practical purposes, choosing
K ≈ K0 is often sufficient to achieve close convergence (see
SM [38]). We stress that, even in case of incomplete or
failed convergence, our method still provides an upper
bound to the actual EOF of the quantum state. In particular,
in every case we could check, the results provided tight
bounds. The accuracy and convergence of the EOF
estimation is discussed in detail in SM [38]: we (i) bench-
mark the optimization procedure applied to exact states of
small systems, whose EOF is known a priori, and (ii) test
how state compression into a TTO affects the EOF
computation, by comparing optimizations done on the

approximate root tensor R and on the exact X, for thermal
states of small systems.
Results.—We consider two well-known prototype quan-

tum critical spin-1
2
models as benchmarks [52]: specifically,

the Ising model

ĤIsing ¼ J
XN

j¼1

ðσ̂xj σ̂xjþ1 þ hσ̂zjÞ ð2Þ

in a transverse field h, and the XXZ model

ĤXXZ ¼ J
XN

j¼1

ðσ̂xj σ̂xjþ1 þ σ̂yj σ̂
y
jþ1 þ ξσ̂zjσ̂

z
jþ1Þ; ð3Þ

with anisotropy ξ, both models considered in periodic
boundary conditions (PBC) and σ̂αj s (α ¼ x, y, z) are the
Pauli matrices. The temperature T, defining the thermal
state ρ ¼ ð1=ZÞe−Ĥ=T , is expressed in units of the
Hamiltonian energy scale (J ¼ kB ¼ 1). To appropriately
choose a suitable number K0 we start from K0 ¼ 2. We
then evaluate the resulting EOF, gradually increasing K0

until convergence of the estimated EOF is reached. We
employ a similar strategy to choose the best M.
Figure 2 shows a typical benchmark comparison of the

total computational time required to acquire the EOF,

FIG. 2. Computational times of EOF estimation “from scratch”
as a function of system size N, for critical ĤIsing (h ¼ 1) at
temperature kBT ¼ 0.5Δ, where Δ ∼ N−z (z ¼ 1) is the finite-
size gap. Two data sets show EOF estimation without TTO
compression: either using the full exact density matrix (green
diamonds), or from the exact X matrix at convergence in columns
K0 (orange squares). The last data set shows EOF estimation with
TTO method, where the Hamiltonian eigenstates were calculated
via tree-tensor network eigensolver algorithm. Inset: bond di-
mensions M required to achieve convergence of the EOF
estimator (approximation less than 1% from its exact value).
Red pentagons and purple diamonds refer, respectively, to the
critical Ising model at kBT ¼ 0.1J and to the XXZ model with
ξ ¼ 0.5 (critical) at kBT ¼ 0.5J.
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which include both calculation of the thermal state and
entanglement measure estimation. Three data sets show,
respectively, EOF estimation using the full exact den-
sity matrix (green), the exact X matrix at convergence in
K0 (red), and the TTO method with tree-tensor network
eigensolver (blue). Complexity of the exact methods
increases exponentially, basically as OðdimfHg3=2Þ, since
the bottleneck of our algorithm is the SVD to calculate
S for each of the K pure states. By contrast, this run-
time scales like OðM3Þ for a TTO representation, with
M ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimfHgp

. At size 20 and beyond, the TTO algo-
rithm clearly outperforms exact methods, displaying a
visibly polynomial scaling. Typical bond dimensions M
required to have a good approximate estimation (99% of
the exact EOF value) are displayed in the inset, and show a
roughly linear scaling with the system size.
Equipped with our diagnostic tool, we quantified the

bipartite entanglement properties of two quantum systems
at finite T. The two panels in Fig. 3 focus on critical phases
of the two models, the quantum phase transition point of
the Ising model (h ¼ 1, top), and the Luttinger liquid phase
of the XXZ model (ξ ¼ 0.5, bottom) respectively. While
the system is strongly correlated at zero temperature,
entanglement seems to survive roughly unaltered up to
T of the order of 0.2ΔðNÞ, with ΔðNÞ the finite-size energy
gap, and smoothly drop at higher T. This phenomenon is to
be contrasted with the von Neumann entropy S (global, or
of either subsystem), which instead grows with T, and
cannot capture alone the entanglement decrease [53,54].
More importantly, we observe an emergent scaling behav-
ior when plotting EFðT;NÞ. In fact, the EOF appears to
follow the logarithm of a conformal scaling function, in
proximity of the quantum critical point (i.e., for small
temperatures T ∼ Δ). For PBC, this behavior can be
expressed as EF ¼ log½Nc=3fðTNzÞ�, or

EFðT;NÞ ¼ c
3
logN þ gðTNzÞ ð4Þ

in analogy to Ref. [55], where c is the critical exponent that
connects length scales to entanglement, while z is the
critical exponent that connects length scales to energy
scales (Δ ∝ N−z). The functions fð·Þ and gð·Þ ¼ log fð·Þ
are nonuniversal and depend on the microscopical details of
the model. This behavior actually extends, to finite T, the
known scaling law for the entanglement entropy with size,
valid for critical ground states [53,54]. We validate this
argument in the inset of Fig. 3, where the EFðT;NÞ data
sets are appropriately rescaled, according to N. As we
expect, the curves collapse when the appropriate critical
exponents of the corresponding model are used (c ¼ 1

2
, z ¼

1 for critical Ising; c ¼ 1, z ¼ 1 for Luttinger liquid XXZ).
In the former case, we pushed the numerics to very
large system sizes and fully exploited the TTO approach.
Larger system analysis of the XXZ model is feasible but

numerically challenging: we thus limited our analysis to
ED methods as it already clearly confirms the scaling
behavior of critical systems.
As a final remark, we stress that the EOF analysis

enabled by the TTO method is not limited to low-temper-
ature many-body states of lattice models. We have
employed the same diagnostic tool on other classes of
mixed many-body states, including on sets where the EOF
is known to further benchmark our approach, as reported in
SM [38].
Conclusions.—In this Letter, we have presented a new

tensor network approach that enables the numerical analy-
sis of bipartite entanglement for many-body quantum
systems, even for those entanglement monotones that are

FIG. 3. Scale invariance of the EOF at temperatures T (in
units of J=kB) in the range kBT ≤ 0.5Δ, where Δ ∝ N−z, for the
critical Ising model in Eq. (2) (top panel) and the XXZ model
in Eq. (3) in the critical phase at ξ ¼ 0.5 (bottom panel). Data
for N ¼ 16, 32, 64, 128 (top, approximate method for TTO
computation) and N ¼ 8, 12, 16, 20 (bottom, exact TTO from
ED), from the flattest to the steepest curve. Inset: curves in the
main figures after rescaling according to Eq. (4). The agreement
is stunning, using c ¼ 1=2 and z ¼ 1.00� 0.01 (top) and c ¼ 1
and z ¼ 0.98� 0.02 (bottom). The gray area highlights the
temperature range T ≤ 0.2ΔðNÞ.
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considered hard since they require convex-roof optimiza-
tion. We employed a tree tensor operator (TTO) to well
approximate the global density matrix at low temperatures.
Such a tensor network architecture compresses information
of the bipartite entanglement into a single tensor, whose
dimensions in many cases scale polynomially with the
system size. As a result, evaluating entanglement monot-
ones is numerically efficient, as illustrated for 1D interact-
ing lattice models. Our analysis observed a scaling law for
the entanglement of formation, compatible with a loga-
rithmic conformal scaling law. We successfully tested this
argument for a free fermion (Ising) and an interacting
fermion (XXZ) critical models, where it is satisfied in a
temperature range commensurate with the finite-size
energy gap (T ∼ Δ).
While we built TTOs by collecting information on low-

lying energy eigenstates, we envision the possibility of
developing algorithms capable of directly targeting finite-
temperature states on a TTO architecture. Similarly, we
envision the possibility of replacing the tree tensor network
branches of the Ansatz with matrix product state branches:
an alternative TN design that is still efficient toward EOF
estimation. Finally, we expect that TTO may be capable to
accurately capture some features of open-system quantum
dynamics. This will actually extend the bipartite-entangle-
ment analysis, presented here, from finite-temperature
states to a larger set of open-system physically relevant
states, i.e., the stationary states of a Lindblad master
equation [56–58]. The time-dependent variational principle
[59,60] is surely a good candidate strategy toward this goal.
This will likely be the focus of our research in the near
future.
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