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We show how to construct general probabilistic theories that contain an energy observable dependent on
position and momentum. The construction is in accordance with classical and quantum theory and allows
for physical predictions, such as the probability distribution for position, momentum, and energy. We
demonstrate the construction by formulating a toy model for the harmonic oscillator that is neither classical
nor quantum. The model features a discrete energy spectrum, a ground state with sharp position and
momentum, an eigenstate with a nonpositive Wigner function as well as a state that has tunneling
properties. The toy model demonstrates that operational theories can be a viable alternative approach for
formulating physical theories.
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Introduction.—Various ideas have been proposed to
generalize quantum theory. For example, quaternionic [1]
and non-Hermitian [2,3] reformulations of quantum theory
were investigated, as well as a more general, operational,
approach to physical theories. While the former are closely
enough related to quantum theory to allow for experimental
tests [4], the operational approaches studied to date are
bound to black-box-like, device-independent, and finite-
dimensional prototheories, which do not describe actual
physical systems, but rather describe information-theoretic
effects, like, for example, bounds on violations of Bell
inequalities [5–7]. The operational approaches we have in
mind here are built on the assumption that convexity
represents mixtures of states and are collected under the
term general probabilistic theories [8]. Within this frame-
work, for example, thermodynamics [9,10], different
notions of entropy [11,12], dynamics [13,14], and recently
even the operational consequences of gravitational effects
[15] were investigated.
The goal of this Letter is to offer a bridge between

operational theories in the above sense and extensions of
quantum theory mentioned earlier. We accomplish our goal
by constructing an operational theory where the energy is
linked to position and momentum, analogically to classical
and quantum theory. Thus we are able to formulate a toy
model for the most archetypal of all physical systems—the
harmonic oscillator. Our construction demonstrates that
there are alternatives to quantization and operator formal-
ism for building physical theories and that one can use the
operational approach for such a construction.
Generalized theories with continuous position and

momentum were investigated before [16]. In these theories,
states are described by pseudoprobability densities, that is
by real valued and possibly nonpositive functions ρðq; pÞ

such that
R
R ρðq; pÞdp is the probability density for the

random variable q̃ corresponding to a position measure-
ment and similarly for momentum. For a function fðq; pÞ,
one obtains the mean value of f via hf̃iρ ¼

R
R2 fðq; pÞ

ρðq; pÞdqdp. This approach is consistent with classical
theory and with the Wigner function formalism of quantum
theory [17–24]. Hence, we can compute the mean value
hH̃iρ of the energy, but we cannot compute the probability
distribution of the energy, or, equivalently, we cannot
compute its higher moments hH̃kiρ. But it is crucial for
any theory to allow us to compute the probability distri-
bution of H̃ since using the probability distribution we can,
for example, determine whether a state is an eigenstate of
the energy observable and, even more important, we can
determine the spectrum of the energy observable. This is no
small feat, as predicting the spectrum of the hydrogen atom
was one of the first results of quantum theory and to this
day finding the energy spectrum of various Hamiltonians is
an important problem.
The first naïve solution would be to compute hH̃2iρ as the

mean value of H2ðq; pÞ, but even in quantum theory we
have hH̃2iρ ≠

R
R2 H2ðq; pÞρðq; pÞdqdp, see Ref. [25]. One

can even show that hH̃kiρ ¼
R
R2 Hkðq; pÞρðq; pÞdqdp only

holds in classical theory [26]. Another naïve solution would
be to treat energy as an independent variable ϵ and to have
pseudoprobability densities of the form ρðq; p; ϵÞ. But then
energy is not linked to position andmomentum and sowe do
not follow this approach.
We solve this problem by introducing phase space

spectral measures. With these measures we achieve our
goal to obtain the probability distribution of H̃ and to
describe the energy spectrum of a general system in a
similar way to using the spectral measure of an operator in
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quantum theory. In fact one can express both quantum and
classical theories using phase space spectral measures,
that is, our general construction includes both theories as
special cases. Thus one can also use our construction as a
groundwork for finding axioms that would uniquely
specify quantum theory among other theories, which would
generalize the known results for finite-dimensional systems
[27–30].
As a demonstration of the generality of our construction,

we present the toy model of the sawtooth oscillator; it is an
infinite-dimensional general probabilistic theory with con-
tinuous position and momentum and with the energy
observable expressed using position and momentum, as
in classical and quantum theory. But the sawtooth oscillator
is neither classical, nor quantum, nor any transitional form
of classical and quantum oscillators. The sawtooth oscil-
lator is characterized by the sawtooth-shaped phase space
spectral measure gHST

and it has an eigenstate ρneg that is
given by a nonpositive pseudoprobability density. We also
show that the model exhibits tunneling properties for an
appropriately chosen state ρtun. Both states, as well as the
spectral measure are depicted in Fig. 1.
Phase space spectral measures in operational

theories.—We work with a general operational theory on
phase space where states are given as pseudoprobability
densitiesρðq; pÞ andobservables are real-valuedphase-space
functions Aðq; pÞ. The states are hence real-valued phase
space functions with normalization

R
R2 ρðq; pÞdqdp ¼ 1.

Importantly, the function ρðq; pÞ is not required to be a
probability density and hence may attain negative values for
some regions in phase space. The mean value of the random
variable Ã associated to the outcomes of ameasurement of the
observable A is given by the phase-space integral

hÃiρ ¼
Z
R2

Aðq; pÞρðq; pÞdqdp: ð1Þ

As outlined in the introduction, this formalism is not yet
sufficient to describe the probability distribution of Ã. To
enable a full probabilistic description, we require that each
observable A has associated a phase space spectral measure
gA with the property that the probability for Ã to attain a
value in the set I ⊂ R is given by

PðÃ ∈ IÞ ¼
Z
R2

gAðI; q; pÞρðq; pÞdqdp: ð2Þ

Consequently, this measure is a pseudoprobability measure
at each phase space point, gAðq; pÞ∶R ⊃ I ↦ gAðI; q; pÞ.
That is, gAð=0; q; pÞ ¼ 0, gAðR; q; pÞ ¼ 1, and gAðq; pÞ is
countably additive on disjoint sets, meaning that for a
countable collection ðInÞn of mutually disjoint subsets of
R, we have gAð∪n In; q; pÞ ¼

P
n gAðIn; q; pÞ. We have

PρðÃ ∈ RÞ ¼ 1 from the normalization of gA and ρ and for
the mean value of Ã we get

hÃiρ ¼
Z
R
aPρðÃ ¼ aÞda;

¼
Z
R

Z
R2

agAðI; q; pÞρðq; pÞdqdpda: ð3Þ

To make this equation coincide with Eq. (1) we impose the
consistency condition

Aðq; pÞ ¼
Z
R
agAða; q; pÞda: ð4Þ

In order for a given ρ to be a phase-space density, we
require that the probability densities of position and
momentum are given as the marginals

R
R ρðq; pÞdp andR

R ρðq; pÞdp, respectively. This allows us to identify
the phase space spectral measure of the position observable
q as

gqðI; q; pÞ ¼
Z
I
δðq − ξÞdξ; ð5Þ

and analogously for the momentum observable p.
At this point we mention a generic way to construct a

phase space spectral measure: let ðtnÞn, tn∶R → R, be a
family of functions and ðanÞn a corresponding family of
eigenvalues such that

P
n tnðxÞ ¼ 1 and

P
n antnðxÞ ¼ x.

Then a phase space spectral measure for A is given by

gAðI; q; pÞ ¼
X
τan∈I

tn½Aðq; pÞ=τ�; ð6Þ

where τ is a constant with the same units as A.

FIG. 1. Phase space spectral measure and phase space
states for the sawtooth oscillator as a function of r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp2=ℏmωÞ þ ðmωq2=ℏÞ
p

in units of ℏ. The functions of the
phase space spectral measure for the energies E0 ¼ 0,
E1 ¼ ðℏω=2Þ, E2 ¼ ℏω, and E3 ¼ ð3ℏω=2Þ are shown in blue,
orange, green, and red, respectively. The “tunneling” state ρtun
and the eigenstate ρneg for the energy E2 are shown in purple and
brown, respectively, with the area under the functions filled.
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Phase space spectral measures in quantum theory.—We
illustrate now how phase-space spectral measures are
obtained in the phase-space formulation of quantum theory.
We start with a short review of the Wigner-Weyl formalism,
for a full review see Ref. [25]. One defines the Weyl
transform of a self-adjoint operator Â as

ÂWðq; pÞ ¼
Z
R
e−

i
ℏp·y

�
qþ y

2

����Â
����q −

y
2

�
dy; ð7Þ

where jxi denotes the formal eigenvector of the position
operator q̂ with eigenvalue x. The density operator is
represented in phase space using the Wigner transform

ρWðq; pÞ ¼ h−1
Z
R
e−

i
ℏp·y

�
qþ y

2

����ρ
����q −

y
2

�
dy: ð8Þ

Note that both Eqs. (7) and (8) describe the same trans-
formation up to the factor of h−1 and both transformations
yield real-valued functions. The Wigner transform of a
state is normalized and can attain negative values, but its
marginals are the probability density of position and
momentum. In the general case of an arbitrary observable
Â, its mean value is obtained as

Z
R2

ÂWðq; pÞρWðq; pÞdqdp ¼ trðÂρÞ ¼ hÃiρ; ð9Þ

where Ã again denotes the random variable corresponding
to a measurement of Â.
In order to obtain the phase space spectral measure of an

observable we use that the probability of observing a value
in a given set of values I is given by PρðÃ ∈ IÞ ¼ trðρΠA

I Þ,
where ΠA

I is the spectral measure of Â, that is,
Â ¼ R

R aΠA
ada. This probability trðρΠA

I Þ can also be seen
as the mean value of the operator ΠA

I and so we can use
Eq. (9) to express this mean value in terms of functions on
phase space; the Weyl transform of ΠA

I yields the phase
space spectral measure gAðI; q; pÞ, that is, gAðI; q; pÞ ¼R
IðΠA

aÞWðq; pÞda.
To illustrate this construction, assume that Â has a

discrete and nondegenerate spectrum with eigenvalues an
and ρWn the Wigner functions of the corresponding eigen-
states. Then

gAðI; q; pÞ ¼
X
an∈I

hρWn ðq; pÞ: ð10Þ

Note that one can also define phase space spectral measures
in classical theory, see the Supplemental Material [31].
Time-evolution and positivity in operational theories.—

For the purpose of this Letter, we assume that the time
evolution in an operational theory is given by the Liouville
equation _ρ ¼ fH; ρg, with ff; gg ¼ ð∂f=∂qÞð∂g=∂pÞ −
ð∂f=∂pÞð∂g=∂qÞ the Poisson bracket and where Hðq; pÞ

is the energy observable. In general one can also use
other possible Hamiltonians as generators of other trans-
lations, but for simplicity we will consider only the time
translations.
Note, that in the Wigner-Weyl formalism, the Poisson

bracket is replaced by the Moyal bracket [19,24]. The
Moyal bracket contains quantum corrections of the order ℏ2

and higher, but it is equal to the Poisson bracket for simple
Hamiltonians, such as for the harmonic oscillator. Yet, in a
general theory, one could imagine a different dynamical
equation, but we choose here an equation that reproduces
the situation for the quantum and classical harmonic
oscillator.
In order to get a consistent theory we must require that all

observable probabilities are positive. Thus if Aðq; pÞ is an
observable in our theory with phase space spectral measure
gAðI; q; pÞ, then we must have

PρðÃ ∈ IÞ ≥ 0; for all I ⊂ R: ð11Þ

Naïvely one would say that any pseudoprobability density
ρðq; pÞ that satisfies positivity for all observables should be
a valid state. This is not the case, because we also have to
require that the time evolution preserves the positivity. This
condition is nontrivial, see the Supplemental Material [31]
for an example.
Note that the positivity conditions for the position and

momentum observables during time evolution are closely
related to any linear combination of position and momen-
tum observables being a well-defined observable. This
property holds in both classical and quantum theory and is
used as a defining property for Wigner representations on
discrete phase spaces [32–36].
We define the set of states using the no-restriction

hypothesis [37,38] as the largest set of pseudoprobability
densities that satisfies the positivity condition for all
(future) times. Since the left-hand side of Eq. (11) and
the time evolution are linear in ρ, it follows that the set of
states is convex. Thus the resulting theory is a general
probabilistic theory and the dimension of the theory is
infinite, because already the spectral measures for q and p
contain infinitely many linearly independent functions,
for example, gqðIn; q; pÞ where In is any open interval
ðn; nþ 1Þ.
The sawtooth oscillator.—The quantum and classical

harmonic oscillator have both the same phase space
representation ĤW ¼ Hc ¼ ðp2=2mÞ þ ðmω2=2Þq2 for
the energy observable and in both models the time
evolution is given by the Liouville equation, see the
Supplemental Material [31] for a short review of the
Wigner-Weyl formalism for the quantum harmonic oscil-
lator. The significant difference between both models lies in
the phase space spectral measure and the corresponding
eigenstates for the energy observable.
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We now introduce the sawtooth oscillator as a toy model
which follows the same principles but is neither classical
nor quantum. That is, the energy coincides with the
classical case, HST ¼ Hc and position and momentum
have the phase space spectral measures given as in
Eq. (5). Our sawtooth model is defined according to
Eq. (6) with the family of functions tn ¼ Tn, n ≥ 0, the
values an ¼ n and τ ¼ 1

2
ℏω. The function Tn are depicted

in Fig. 2 and defined in the Supplemental Material [31].
Hence, our phase space spectral measure reads

gHST
ðI; q; pÞ ¼

X∞
n¼0

�Z
I
δ

�
ℏω

n
2
− ϵ

�
dϵ

	
Tnðr2Þ; ð12Þ

where r2 ¼ 2Hcðq; pÞ=ℏω. By construction, the energy
spectrum of the sawtooth oscillator is discrete, with
energies ℏωðn=2Þ for n ¼ 0; 1; 2;… From

P
n TnðxÞ ¼ 1

it follows that the normalization condition is satisfied,
gHST

ðR;q; pÞ ¼ P∞
n¼0 Tnðr2Þ ¼ 1 and furthermore, due toP

n nTnðxÞ ¼ x, Eq. (4) is also satisfied,

HSTðq; pÞ ¼
X∞
n¼0

ℏω
n
2
Tnðr2Þ ¼

1

2
ℏωr2 ¼ Hcðq; pÞ: ð13Þ

We mention that, following our general construction
scheme, one can in principle apply similar sawtooth
constructions to other systems, for example the hydrogen
atom with HHðq; pÞ ¼ ðjpj2=2mÞ − ðκ=jqjÞ. By extending
T0 and T1 to negative x, T0ðxÞ ¼ 1 − x, and T1ðxÞ ¼ x,
we only have to adapt the constant τ, for example,
τ ¼ −mκ2=2ℏ2. Then, Eq. (6) yields a phase space spectral
measure for HH with spectrum 0; τ; 2τ;… However, this
construction is rather naïve, for example, the spectrum does
not have a lower bound and the construction completely
ignores the role of the angular momentum.

Returning to the sawtooth oscillator, it is different from
the classical and quantum case as can be demonstrated by
considering possible states in the model. First, we consider
the state ρ0ðq; pÞ ¼ δðqÞδðpÞ. Then we have Pρ0ðH̃ ¼
0Þ ¼ hgHST

ð0Þ; ρ0i ¼ 1 and so ρ0 is a time-invariant eigen-
state of the sawtooth oscillator corresponding to zero
energy. This state is completely localized in the phase
space, that is, the preparation uncertainty of both position
and momentum is jointly zero and hence is at variance with
quantum theory. Second, the sawtooth oscillator is not
classical: for the nonpositive pseudoprobability density ρneg
depicted in Fig. 1 and defined in the Supplemental Material
[31], one can show that ρneg is an eigenstate of the sawtooth
oscillator corresponding to the energy ℏω. The nonposi-
tivity of ρneg implies that we cannot jointly measure the
position and momentum of ρneg, hence the state demon-
strates nonclassicality in the toy model. We also define the
“tunneling” state ρtun, see Fig. 1 and the Supplemental
Material [31]. This state is not an eigenstate of the sawtooth
oscillator, it has probability 1

2
for H̃ ¼ 0 and H̃ ¼ ðℏω=2Þ.

We discuss now in which sense this state has tunneling
behavior.
Quantum tunneling in the sawtooth oscillator.—We use

the definition of tunneling presented in Ref. [39]. Usually
one says that a quantum particle is tunneling, if the particle
crosses a potential barrier that is higher than the energy of
the particle. This definition is not applicable to the
harmonic oscillator because the potential is not in the form
of a barrier. But in the standard scenario, if the particle is
able tunnel through a potential barrier, there must be a
nonzero probability of observing the particle inside the
potential barrier, that is, the wave function of the particle
must penetrate into the barrier. One can generalize this
statement as follows. The probability of observing a
particle in the region inside the barrier is higher than the
probability of the particle having energy higher than the
energy of the barrier. In this sense a state ρ has tunneling
behavior if there is some threshold α such that

Pρ½Vðq̃Þ > α� > Pρ½H̃ > α�; ð14Þ

where VðqÞ is the potential energy and H̃ is again the
random variable corresponding to the total energy.
According to the classical intuition, one would expect that
the potential energy is upper bounded by the total energy of
the particle. This does not have to be the case in general,
even in the standard formulation of tunneling the particle
has nonzero probability of being localized inside the
barrier, which is a region where the potential energy is
higher than the total energy of the particle. Equation (14)
formalizes this using the respective probabilities. When this
definition is applied to the quantum harmonic oscillator one
finds [39] that the wave function of the ground state has
tunneling behavior, which in this case means that the wave

FIG. 2. The functions Tn used in the construction of the phase
space spectral measure for the energy observable of the sawtooth
oscillator.
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function of the ground state spreads more than its energy
would allow according to classical intuition.
Returning to the sawtooth oscillator, for the state ρ0, we

have Pρ0 ½H̃ ¼ 0� ¼ 1 but Pρ0 ½Vðq̃Þ > 0� ¼ 0 and therefore
ρ0 has no tunneling behavior. Also, for the nonclassical
eigenstate ρneg we findPρneg ½H̃ ¼ ℏω� ¼ 1 butPρneg ½VðqÞ >
ℏω� ¼ 0. It follows that the eigenstate ρneg with nonzero
energy does not exhibits tunneling behavior, contrary to the
quantum case.
In contrast, the state ρtun has a positive probability

density and so one may expect that it must behave
according to classical intuition, but this is not true.
Because the phase space spectral measure gHST

is different
from the classical one, positivity of ρtun does not imply
classicality. For 0 < α < ðℏω=2Þ we have Pρtun ½H̃ > α� ¼
1
2
. Since VðqÞ ¼ 1

2
mω2q2, it follows that Pρtun ½Vðq̃Þ > 0� ¼

1 − Pρtun ½q̃2 ¼ 0� ¼ 1 and so for a sufficiently small α > 0

we must have Pρtun ½Vðq̃Þ > α� > 1
2
, see the Supplemental

Material [31] for details. Hence ρtun exhibits tunneling
behavior for a sufficiently small threshold α.
Conclusions.—The main conceptual result of this Letter

is that the constructed phase space spectral measures are
key to an operational approach for working with energy and
other observables that depend on position and momentum.
Using this result, we have essentially formulated all
possible theories of the harmonic oscillator, up to intro-
ducing exotic dynamics beyond what we observe in
classical and quantum theory. One can clearly extend the
construction to the case of multiple particles by adding
additional pairs of variables qi, pi. Using this approach, one
can construct a field theory with exotic properties, since the
sawtooth oscillator has a discrete energy spectrum, but the
ground state has zero energy. In general, the phase space
spectral measure of the energy does not have to have an
equidistant distribution of the energy levels, therefore one
can obtain a field theory without well-defined photons,
which may give rise to the prediction of new physical
effects.
As already pointed out, one can also formulate theory of

hydrogen atom analogically to the sawtooth oscillator, but
the results are not fully satisfying. Apart from the afore-
mentioned problems with the energy spectrum and lack of
angular momentum, one also has to consider the
time evolution, since in quantum mechanics the time
evolution of the hydrogen atom is no longer given by
the Liouville equation. Hence one needs to find some
generalization of the Schrödinger equation and some
other phase space spectral measure with more physical
spectrum, but then one also needs to verify whether these
choices are consistent and whether they produce an opera-
tional theory with satisfactory physical properties, for
example the phase space spectral measure should be
stationary. Further discussion of these problems is left
for future work.
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