
Experimental Shot-by-Shot Estimation of Quantum Measurement Confidence

Ivan A. Burenkov ,1,2,* N. Fajar R. Annafianto ,2 M. V. Jabir ,2 Michael Wayne,1,2

Abdella Battou ,2 and Sergey V. Polyakov2,3
1Joint Quantum Institute and University of Maryland, College Park, Maryland 20742, USA

2National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
3Physics Department, University of Maryland, College Park, Maryland 20742, USA

(Received 21 January 2021; accepted 3 December 2021; published 25 January 2022)

We demonstrate the single-shot confidence estimation for individual quantum measurement outcomes
using the continuous measurement theory of the quantum counting process applied to the quantum state
identification problem. We experimentally obtain single-shot and average confidences for quantum
measurements and show that they favorably compare to that of the idealized classical measurement. Finally,
we demonstrate that single-shot confidence estimations correctly represent observed experimental
outcomes for a large ensemble of measurements.
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Measurements connect quantum mechanics to the
“classical” world. Yet, unless the measured quantum state
belongs to a known orthogonal set, it is not possible to
measure the state of a quantum system with a single-shot
measurement. Thus, without some prior knowledge, the
state cannot be determined with full certainty. Because of
the inherent uncertainty of all measurements, only partial
information about the observed quantum system is typi-
cally available [1–3]. Understanding and practically attain-
ing the fundamental limits on the achievable accuracy is the
paramount problem in quantum measurement. It has been
shown that quantum measurements can significantly sur-
pass classical measurements and, in some cases, asymp-
totically approach the fundamental limits of accuracy, see,
for example, [4–10]. Generally, because quantum measure-
ments are probabilistic, these efforts describe probabilities
for experimental outcomes, not exactly what will occur in
each measurement. Here, for the first time, we experimen-
tally obtain confidence estimates for each individual
measurement outcome and verify that each single-shot
estimate correctly predicts the accuracy of the correspond-
ing act of measurement.
Identifying randomly distributed quantum states from a

known set of states is an important application of quantum
measurements [4,11–13]. Because perfect identification of
nonorthogonal states is impossible, a certain figure of merit
is identified, and the measurement is optimized accordingly
[11,14–16]. One such figure of merit is the probability to
obtain the correct result without learning which identifi-
cation is correct and which is wrong. A quantum meas-
urement can be optimized so that this probability can
surpass the so-called shot-noise limit of the ideal classical
measurements, [5,6,9,17–28]. Other figures of merit exist.
For instance, knowing which states in particular were
identified without error may be desired. Theoretically,

error-free identification is probabilistically possible, i.e.,
a measurement protocol which occasionally fails, but when
the protocol is successful, the result is always correct [29–
31]. The figure of merit, then, is the probability of a
successful, conclusive result. In practice, this so-called
unambiguous state discrimination is not completely error
free due to experimental imperfections [32–36].
A shot-by-shot confidence estimation in quantum state

discriminationmeasurements is a useful generalization [37].
Both the unambiguous discrimination of linearly indepen-
dent states [31] (more generally, of states whose support
does not overlap [38]) and the minimum-error discrimina-
tion when the average confidence is maximized [16] reduce
to the maximum confidence problem. In general, the
maximum confidence measurement strategy is not known
for discriminating more than two states [39–41].
In this Letter, we experimentally obtain confidence

estimations for individual, single-shot quantum measure-
ments. We demonstrate higher single-shot and averaged
fidelity between the measured and the input states than that
of the idealized classical measurement. We verify that
single-shot confidence estimations experimentally match
the observed success probabilities averaged over a large
ensemble of measurements. The knowledge of the con-
fidence of each act of measurement independently general-
izes state identification problems and opens multiple
possibilities in applied quantum measurement; for instance,
it could enhance the measurement accuracy beyond
classical means. It can also be used for advanced error
correction and the self-diagnostics of a quantum measure-
ment system.
Consider a single-shot state identification problem where

only a single copy of the input state ϕs, s ∈ 1;…;M is
available. Without the loss of generality, we assume that
fϕsg are in a single spatial mode and focus on temporal
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dynamics. We take an explicit advantage of the fact that the
continuous measurement of the state jϕi is made over time
T, where T is the duration of the input pulse. In the
continuous limit, the measurement operator is (cf. [42–44])

π̂ ¼ lim
dt→0

ðĈTÛT ×… × Ĉ2dtÛ2dtĈdtÛdtÞ; ð1Þ

where Û denotes a transformation of the state, such as
coherent displacement, and Ĉ describes photon counting on
the interval dt. The choice of unitary transformations
applied to a measured state fÛg depends on the choice
of the figure of merit of the measurement and the set of ϕs.
Owing to the probabilistic nature of photon detection, the
outcome of this continuous measurement is unique for each
individual measurement attempt. It consists of the history
of all measurements λ and all applied transformations:
Z½0; t� ¼ ðλt;…; λ2dt; λdt; Ût;…; Û2dt; ÛdtÞ, where t < T
[45]. When t ¼ T, the measurement history is complete,
otherwise, the record is incomplete. The conditional prob-
ability pðZ½0; t�jϕsÞ that a given measurement record
Z½0; t� occurs if the input was in a state ϕs, can be
computed using a model of the experiment. The model
can account for experimental imperfections, such as non-
ideal displacement and dark noise of the detector. The
probability pðϕsjZ½0; t�Þ that the input state is ϕs once the
record Z½0; t� can be obtained using the Bayes formula

pðϕsjZ½0; t�Þ ¼
pðZ½0; t�jϕsÞp̃s

pðZ½0; t�Þ ; ð2Þ

where P⃗0 ¼ fp̃sg is the probability to encounter an input
stateϕs, which is typically known from the formulation of the
problem. We form a vector of confidences, using probability
values P⃗ ¼ fpðϕsjZ½0; t�Þg, whose components represent
our best knowledge about the input state during (t < T) and
after (t ¼ T) the measurement. We experimentally measure
Z½0; T� and obtain P⃗. See Supplemental Material [46] for
examples of measurement strategies, Z½0; T�, models that
relate Z½0; T� to P⃗, and corresponding P⃗.
In our experimental example, we find shot-to-shot

confidences in an optical continuous quantum measure-
ment, maximizing the probability of the successful detec-
tion. The input is in one of M ¼ 4 flat-top equiprobable
coherent states that differ by phase: jϕsi ¼ jαeis2π=Mi,
Fig. 1(a). The measurement consists of the coherent
displacement stage and the single-photon detector,
Fig. 1(c). Because we are interested in maximizing the
probability of correct identification, the displacement
adapts according to the following rules. At t ¼ 0, we set
the local oscillator (LO) to state h0 that corresponds to
displacing the state with the highest initial probability
maxðp̃sÞ to vacuum. Here, the initial vector is set to equal
probabilities P⃗ð0Þ ¼ f0.25; 0.25; 0.25; 0.25g, which is a

common situation for data communication applications.
Because our states are equiprobable, we chose h0 ¼ 0.
During the measurement, we use the incomplete detection
record Z½0; t� to update the hypothesis. The adaptive
algorithm is discussed in detail in the Supplemental
Material [46]. Unless a photon is detected, components
of the vector P⃗ evolve continuously. Once a photon is
detected at tj, the probability phj−1 gets reduced, while other
probabilities become higher [51], Fig. 1(b). Evidently, with
ideal displacement and noiseless detection the conditional
probability that the input state is hj−1 reduces to zero if a
photon is detected at tj, however, ideal displacement cannot
be achieved in a practical measurement. According to the
adaptive algorithm, updates of h only occur when a photon
is detected at time tj [22,27,51]. Note that the chance to
detect more than one photon during dt → 0 is negligible for
weak coherent states, i.e., λ ¼ f0; 1g. Thus, in our case, the
measurement record gives the exact times of photodetec-
tion events and applied unitary transformations (displace-
ments). The updates of h and corresponding unitary
transformations Û follow the Bayesian inference, with
the incomplete record Z½0; tj�. At the end of the mea-
surement t ¼ T, we obtain Z½0; T� ¼ ðt1; t2;…; tf; Ûh0 ;

Ûh1 ;…; ÛhfÞ and the vector P⃗. Prior to this Letter, the

(a)
(b)

(c)c)

FIG. 1. (a) A constellation diagram of M ¼ 4 coherent states
that differ by phase. Fuzzy circles represent uncertainty due to
shot noise. Black dot—a possible outcome of a homodyne
measurement. Arrows—difference between the value obtained
with a homodyne and the expected states (used in calculating P⃗C,
see text); (b) an example of the experimentally measured P⃗ðtÞ in a
single-shot measurement. Here, single photon detections occur
three times at t1, t2, and t3; (c) Experimental setup. For each
signal pulse, the quantum measurement determines the most
likely input state and the confidence of discrimination (Bayesian
probability of each of the possible states based on the measure-
ment record, see text). The optical input for system efficiency
characterization is defined at the input port of the fiber beam
splitter (BS) used for displacement and includes detection
efficiency of the single-photon detector (SPD).

PHYSICAL REVIEW LETTERS 128, 040404 (2022)

040404-2



measurement records Z and numerical values of P⃗ com-
ponents were inaccessible. Yet, because the exact pattern of
photon detections is unique to each measurement “shot,”
due to the stochastic nature of photon detection, the record
Z and the values of P⃗ are also unique to each shot. As we
experimentally show, these numerical values represent our
best knowledge of the input state and describe the indi-
vidual reliability for each act of measurement. Examples of
raw experimental data and corresponding temporal evolu-
tion of P⃗ðtÞ are available in the Supplemental Material [46].
P⃗ can be generalized to classical measurements. The

ideal homodyne measurement is limited by shot noise.
Therefore, a measurement of the state of the input field
[I and Q, Fig. 1(a)] does not determine the input state with
full certainty [52]. A vector P⃗C for each classical meas-
urement outcome fI; Qg can be determined as [cf. Eq. (2)]

pCðϕsjI; QÞ ¼ pðI; QjϕsÞp̃sP
M
j¼1 pðI; QjϕjÞp̃j

; ð3Þ

where pðI;QjϕsÞ ¼ exp½−ðI−αcosθsÞ2− ðQ−αsinθsÞ2�.
Therefore, the uncertainty of the classical measurement of I
and Q results in the uncertainty of state discrimination,
where P⃗C represents our knowledge about the input state in
a full analogy with the quantum measurement.
Figure 1(c) shows our experiment. A laser at 632 nm is

used to prepare both input and the LO states. Phases are
adjusted with acousto-optic modulators [53]. The field
programmable gate array (FPGA) generates rf pulses at
80MHz to set the appropriate phase for both signal and LO,
runs the maximal likelihood estimation algorithm, and
reports values of P⃗ for each measurement. The displacement
occurs on a T ∶R ≈ 99∶1 beamsplitter. The single-photon
detector is a commercial silicon avalanche photodiode. The
mean photon number of the input state is measured to be

2.68 photons/pulse (2 photons/pulse after adjustment for
system efficiency), and the LO is ≈100 times stronger than
the input state before the beamsplitter. The setup is
interferometrically stabilized with a 795 nm auxiliary laser
locked to a rubidium atomic line. The measurement and
locking cycles are interspersed with a duty factor of 50%.
The symbol duration is T ¼ 65.4 μs. The measured vis-
ibility of the interferometer is 99.7%. The system efficiency
is 74.5(6)%, which includes propagation loss of 11.4(5)%
and detection efficiency of 84.0(3)%.
In our experiment, we send user-defined 128 × 128 ¼

16 384 pixel images and identify 16 384 states using
quantum measurement. Each pixel represents one input
state s, and each of the four primary colors (black, yellow,
cyan, and magenta) corresponds to an input symbol
jϕ0i;…; jϕ3i of the alphabet, color ¼ δ0;s × blackþ δ1;s×
yellowþ δ2;s × cyanþ δ3;s × magenta, where δ is the
Kronecker delta. Every possible input symbol is sent
4096 times, Fig. 2 (left). Upon single-shot measurements,
the same image is reconstructed using the confidence
vector P⃗, such that color¼p0×blackþp1×yellowþp2×
cyanþp3×magenta, see Fig. 2 (middle). Received pixels
can have an arbitrary color, because all four components of
P⃗ may be nonzero. If a measurement determines the input
state correctly and with low uncertainty, pixels on the
reconstructed image are almost indistinguishable from the
original. Some pixels appear as off color “polka dots” in
Fig. 2 (middle). Lower-confidence, but correct outcomes
resemble the expected primary color, but appear off
color. Lower-confidence, incorrect outcomes are also off
color, and they do not resemble the expected primary color.
Finally, high-confidence incorrect outcomes are close to the
unexpected primary color. In our case, most of the pixels
are close to the primary color, because the overall error
rate in this experiment is fairly low: ≈4.7%. To compare
the accuracy of this measurement to an ideal classical

FIG. 2. A visual comparison of single-shot confidence estimates in quantum and classical measurements. Left: the original image of
128 × 128 pixels where four primary (black, yellow, cyan, and magenta) colors correspond to the different symbols jϕsi. Middle: the
same image experimentally obtained from continuous quantum measurement record. Right: the same image reconstructed from
the simulated ideal homodyne measurement. The color for each pixel is calculated as a sum of primary colors weighted with the
probabilities P⃗ (middle) and P⃗C (right) of corresponding symbols.
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measurement, we plot a simulated reconstructed image
using the same input conditions and assuming the ideal
shot-noise limited homodyne detector, Fig. 2 (right). We
see a higher number of lower-confidence measurements.
This result is not surprising, because our measurement
method is not constrained by the shot noise, while classical
measurement is.
The single-shot fidelity estimate can be introduced as

F ¼ P⃗ S⃗, where S⃗ is the input state (when jψ si is sent, the
components of S⃗ are Sj ¼ δj;s). For a large ensemble of
measurements, we group all estimates F into 10%-wide
bins. We compute and plot NF , the total number of trials
whose fidelity estimate falls into each bin normalized on
total number of trials NTrials, Fig. 3. We compare the
experimental data with the simulated ideal homodyne
measurement with unit efficiency, simulated ideal homo-
dyne with the same system efficiency as our experiment,
and the simulated ideal displacement-based adaptive quan-
tum measurement with unit efficiency using the same input
conditions. In Fig. 3, we see that our measurement
produces high fidelity (F > 0.9) results about 1.06 times
more often than the ideal classical measurement with unity
efficiency and 1.36 times more often than the ideal classical
measurement with matching system efficiency. Note that
the number of measurement outcomes with lower fidelity is
significantly lower for our measurement in comparison to
the ideal homodyne measurement. In particular, the homo-
dyne measurement returns almost an order of magnitude
more outcomes with F ≈ 0.5. Therefore, the quantum
measurement unconditionally provides more definitive
information about the input state. In aggregate, the average
fidelity of our quantum measurement is hF i ¼ 0.874ð1Þ,
whereas the average fidelities of the idealized classi-
cal measurements are hFCi ¼ 0.854ð1Þ and 0.782(1)
for unit and matching experimental system efficiencies,

respectively. The ideal displacement-based measurement
would give hF i ¼ 0.981ð1Þ, while the fidelity of the ideal
quantum measurement can be bounded from above by
0.998 under our experimental conditions, see Supplemental
Material [46].
In practice, S⃗ is a priori unknown. Now, we experi-

mentally show that P⃗ represents our best knowledge about
the input state. For a large ensemble of measurements, we
see how often the true state of the input matches a measured
state component whose single-shot probability falls into a
certain range. For all the components p of the P⃗ ¼
fp0;…; p3g, we define the 10%-wide bins, and we
compute the number of successful and unsuccessful state
identifications. The probability of a successful identifi-
cation q is qðpÞ ¼ Ncorrect=ðNcorrect þ NincorrectÞ, where
Ncorrect;incorrect are the number of correct (incorrect) detec-
tions. We plot q as a function of p, (Fig. 4). Experimentally,
we see that the ensemble average discrimination error
probabilities observed for an ensemble of single-shot
measurements q are equal to the observed single-shot
confidence estimations p, Fig. 4. Remarkably, this equality
is true for any value of p, including the measurements with
very high confidence estimation p ≈ 1 and low confidence
estimation p ≈ 0. An obvious use of p is to set a confidence
threshold pth < 1 and reject the measurements where
maxðpjÞ < pth. This use of p is similar to the unambiguous
state discrimination, but the confidence threshold is below
unity. The experimentally measured error rate for nomi-
nally unambiguous measurements in [35] and [36] are
≈2.5% and ≈1%, respectively, similar to the verified
single-shot confidence of our experiment. A very impor-
tant, less obvious result is that the smaller components
of P⃗, i.e., the components which would not be picked in a
maximal likelihood analysis, successfully determine the
input state with the same probability as that obtained
from single-shot measurement. Thus, we verified that

FIG. 3. Probability of the measurement outcome with a certain
fidelity for faint input (hni ¼ 2.68 photons per signal pulse)
prepared in one of M ¼ 4 states. Orange bars—simulation of the
ideal homodyne receiver adjusted for system efficiency of 74.5%.
Red bars—simulation of the ideal homodyne receiver. Purple
bars—experimental data. Blue bars—simulation of the idealized
experimental receiver. Histogram bin width is 0.1, bin center
positions are shown on the horizontal axis.

FIG. 4. Experimentally measured single-shot confidence vs the
experimental ensemble average probability of a successful state
discrimination obtained for faint input (hni ¼ 2.68 photons per
signal pulse) prepared in one of M ¼ 4 states. Vertical error bars
correspond to 1 standard deviation, horizontal error bars show
histogram bin size.
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P⃗ represents the best knowledge about the input state, for
each single-shot measurement record. A deviation from
the straight line can be used to identify either a wrong
measurement model and/or incorrectly assigned P⃗ð0Þ.
In conclusion, this Letter is the first experimental

measurement of the single-shot confidence estimates.
Here, confidences are obtained for an example of quantum
state identification by taking advantage of continuous
quantum measurement. We have shown that the fidelity
of the received states is significantly higher in our experi-
ment when compared to the ideal classical measurement.
We have also shown that the Bayesian probability estimates
of successful detection correctly identify success proba-
bilities found by ensemble averaging. Fundamentally, this
experiment illustrates some of the principles of quantum
Bayesianism [54], whereby the information obtained in a
quantum measurement depends on the agent that performs
the measurement (in our example, either a classical or a
quantum measurement device) and on its measurement
outcomes (in our example, the measurement record). We
have shown that the continuous measurement offers a
significant advantage by making the single-shot confidence
estimation available and have demonstrated that both prior
knowledge about measured quantum sates and the physical
model of the measurements used to identify these states are
close to the actual conditions. In practice, the single-shot
confidence estimation vector can be used to discard low
confidence quantum measurements, correct measurement
errors, as well as detect eavesdropping and distortion
specifically in communication channels.

This work is partially supported by the National Science
Foundation under Grant No. ECCS 1927674.
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