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In this Letter, we investigate the effects of a time-dependent, short-ranged interaction on the long-time
expansion dynamics of Fermi gases. We show that the effects of the interaction on the dynamics is dictated
by how it changes under a conformal transformation, and derive an explicit criterion for the relevancy of
time-dependent interactions near both the strongly and noninteracting scale invariant limits. In addition, we
show that it is possible to engineer interactions that give rise to nonexponential thermalization dynamics in
trapped Fermi gases. To supplement the symmetry analysis, we perform hydrodynamic simulations to show
that the moment of inertia of the trapped gas indeed follows a universal time dependence that is determined
jointly by the conformal symmetry and time-dependent scattering length aðtÞ. Our results should also be
relevant to the dynamics of other systems that are nearly scale invariant and that are governed by a
nonrelativistic conformal symmetry.
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Introduction.—Conformal symmetry [1–3] imposes
severe constraints on the dynamics of nonrelativistic scale
invariant quantum systems due to an overarching SO(2,1)
symmetry that canoccur for quantumsystemswith dynamical
critical exponent z ¼ 2 [4–9]. Themost prominent example is
the unitary Fermi gas in three dimensions, for which the
quantumcritical point occurswhen the scattering length tends
to infinity [10]. At the critical point, the dynamics is severely
constrained by a dynamical conformal symmetry, indepen-
dent of the microscopic details of the system. For example, it
leads to phenomena such as vanishing bulk viscosity [11],
Efimovian expansion [12], eliptic flow in unitary Fermi gases
[13] and the oscillations of the momentum distribution in a
Tonks-Girardeau gas [14,15].
In this Letter, we show that for two-component Fermi

gas away from its critical points, the dynamical conformal
symmetry could still impose severe constraints on its
dynamics. In particular, we show that in the long-time
limit, its dynamics can be either fixed entirely by the
conformal symmetry, or in the case when it is not, can be
shown to depend on aðtÞ in a universal fashion. In this case,
both the strongly interacting quantum critical point and the
noninteracting point represent scale invariant fixed points
(SIFP) in terms of the renormalization group flow [16]. We
derive explicit expressions describing the breaking of
conformal symmetry based on how aðtÞ transforms under
the conformal transformation, and investigate its effects on
its expansion dynamics and elliptic flow.
In the long-time limit, conformal symmetry also

imposes constraints on the thermalization process of the

system [17]. By tuning the time dependence of aðtÞ, it turns
out that one can not only change the thermalization rate, but
also engineer power-law thermalization. This provides a
unique route for experimentalists to access the implication
conformal symmetry in simple experimental settings, such
as the damping of monopole oscillations.
Breaking of conformal symmetry with time-dependent

interactions.—We begin by considering the expansion
dynamics of a two-component Fermi gas near the strongly
interacting SIFP in d dimension. The total Hamiltonian can
be expanded as [9,18]

HðtÞ ≈Hs þ
1

ad−2ðtÞCa; ð1Þ

where Hs is the scale invariant Hamiltonian at the strongly
interacting SIFP, and Ca is the contact operator [19–23].
For d ¼ 3, aðtÞ is simply the s-wave scattering length. The
strongly interacting SIFP is defined when 1=ad−2ðtÞ ¼ 0.
Equation (1) is valid to O½a2−dðtÞ�, and is a good approxi-
mation provided that the rate of change of aðtÞ is much
slower than that set by the range r0 of the two-body
potential, ℏ=mr20, which is usually very well satisfied in
actual experiments.
The dynamics of the density matrix ρðtÞ can be split into

a matrix governed by the scale invariant Hamiltonian ρsðtÞ,
and a matrix governed by the initial conditions and the
breaking of conformal symmetry ΓðtÞ: ρðtÞ ≈ ρsðtÞΓðtÞ
[9,24]. The trivial dynamics of ρsðtÞ are solely controlled
by the so-called conformal tower states, which are defined
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as the eigenstates of the scale invariant gas inside an
isotropic harmonic potential,

½Hs þ ω2
0C�jn;li ¼ El

njn;li; ð2Þ

where C ¼ 1
2
m
P

i r
2
i is the moment of inertia. In Eq. (2),

ω0 is an arbitrary trapping frequency, and jn;li is the nth
state in the lth conformal tower with energy El

n. The trivial
dynamics associated with the conformal towers have
previously been used to study a variety of dynamical
phenomena [5,9,12,14,17,18,25–33]. On the other hand,
the nontrivial conformal symmetry breaking dynamics
contained in ΓðtÞ satisfy the following differential equation:

∂tΓðtÞ ¼
i

ad−2ðtÞ ½e
iHstCae−iHst;ΓðtÞ�; ð3Þ

where Γð0Þ ¼ ρ0 is the initial density matrix.
The effect of the scale symmetry breaking interactions,

or, equivalently ΓðtÞ, can be understood by examining the
matrix elements of ΓðtÞ with respect to the conformal tower
states to first order in perturbation theory:

hn0;l0jΓðt ≫ ω−1
0 Þjn;li

≈ hn0;l0jΓð0Þjn;li

þ i
�Z

t

ω−1
0

dt0

λ2ðt0Þ
�
λðt0Þ
aðt0Þ

�
d−2

�
hn0;l0j½C̃a;Γð0Þ�jn;li;

ð4Þ

where λðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðω0tÞ2

p
for expansion dynamics in free

space and hn0;l0jC̃ajn;li ¼ exp½iπðEl0
n0 − El

nÞ=ð2ω0Þ�
hn0;l0jCajn;li. Equation (4) states that all the nontrivial
dynamics contained in ΓðtÞ must be a function of the
effective coupling constant

gðtÞ≡
Z

t

ω−1
0

dt0

λ2ðt0Þ
�
λðt0Þ
aðt0Þ

�
d−2

ð5Þ

to first order in perturbation theory. In fact, in the long-time
limit, one can show that all the leading dynamical effects
due to the scale symmetry breaking can be written as a
function of gðtÞ to all orders of perturbation theory [18,24].
In the case of expansion inside a harmonic trap with time-
dependent trap frequency ωðtÞ, we need to replace λðtÞ in
gðtÞ by the solution to the following differential equation:
ω2
0 ¼ ̈λðtÞλ3ðtÞ þ ω2ðtÞλ4ðtÞ with λð0Þ ¼ 1 and _λð0Þ ¼ 0,

and ωðtÞ the time-dependent harmonic trap frequency with
ωðt ¼ 0Þ ¼ ω0 [24].
Generally, irrespective of the detailed form of aðtÞ, if

gðtÞ saturates in the long-time limit, then Γðt ≫ ω−1
0 Þ tends

to a constant and the dynamics are entirely controlled by
ρsðtÞ, which in turn is expressed by the time-dependent
rescaling of the conformal tower states. In other words,

there is an emergent conformal symmetry constraining the
dynamics in the long-time limit. Alternatively, if gðtÞ has
nontrivial dynamics in the long-time limit, the effects of the
conformal symmetry breaking perturbation will be impor-
tant and there will be no emergent conformal symmetry.
To exemplify this difference, we consider for simplicity a

power-law time dependence for the scattering length

aðtÞ ¼ a0ðηtÞγ; ð6Þ

where γ is a real number, while a0 and η have units of
length, and frequency, respectively. For this perturbation,
one can evaluate Eq. (5) analytically:

gðt ≫ ω−1
0 Þ ¼ 1

ω2
0

�
ω0

a0ηγ

�
d−2 td−3−γðd−2Þ

d − 3 − γðd − 2Þ þ g0; ð7Þ

for some constant g0 that describes the short-time physics.
gðtÞ has a nontrivial time dependence in the long-time
limit if

d − 3 ≥ ðd − 2Þγ strong interactions: ð8Þ

In three dimensions, Eq. (8) reduces to γ ≤ 0. Therefore,
any static perturbation, γ ¼ 0 is marginal, while any
perturbation that moves away from the strongly interacting
SIFP, γ < 0, is relevant, consistent with previous studies
[9,18]. Similarly, in one dimension we find that a pertur-
bation near the strongly interacting SIFP becomes relevant
when γ ≥ 2. In this case, a static perturbation is irrelevant,
and one needs to have a scattering length that increases
quadratically, γ ¼ 2, in order to break the conformal
symmetry. Therefore, the one-dimensional strongly inter-
acting SIFP is much more resilient against perturbations.
Similar arguments apply around the weakly interacting

gases. Expanding the Hamiltonian around the noninteract-
ing SIFP, ad−2ðtÞ ¼ 0, one finds the following definition of
the effective coupling constant:

gðtÞ ¼
Z

t

ω−1
0

dt0

λ2ðt0Þ
�
aðt0Þ
λðt0Þ

�
d−2

; ð9Þ

and the following criterion for the breaking of conformal
symmetry for time dependence of aðtÞ given by Eq. (6):

d − 1 ≤ ðd − 2Þγ weak interactions: ð10Þ

The relevancy of aðtÞ in the weak coupling limit reads
γ ≥ 2 in three dimensions while for one dimension: γ ≤ 0.
The three- (one-) dimensional criterion near the strongly
interacting SIFP is equivalent to the one- (three-) dimen-
sional criterion for weak interactions. In Fig. 1, we show a
schematic for how the effective coupling constant gðtÞ
changes with time, and the associated time dependence of
the scattering length aðtÞ near both the strongly interacting
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and noninteracting SIFPs in three dimensions. A relevant
perturbation would lead to an increase of the effective
coupling constant gðtÞ as a function of time.
In two dimensions, there is a single noninteracting SIFP.

Equation (10) then states that any scattering length with a
power-law time dependence is irrelevant to the expansion
dynamics. This conclusion is consistent with the fact that
two-body interaction depending on the scattering length
logarithmically, i.e., the quantum anomaly [34–38].
Consequences of broken conformal symmetry on eliptic

flow.—The conclusions of the previous section are inde-
pendent of the initial state of the system, and depend only
on the conformal SO(2,1) symmetry. As an example, let us
consider the effects of a time-dependent perturbation on the
expansion dynamics of three-dimensional Fermi gases in
an anisotropic trap, i.e., elliptic flow [13,39]. Let us define
the moments of inertia as

hr2i iðtÞ ¼
1

N

Z
drr2i nðr; tÞ; i ¼ x; y; z; ð11Þ

where nðr; tÞ is the density of the gas. As shown in Ref. [9]
and detailed in the Supplemental Material [24], near a SIFP,
hr2i iðtÞ takes the following form in the long-time limit:

hr2i iðt ≫ ω−1
i Þ ≈

�
Ai þ

Bi

ωit
þ Di

ðωitÞ2
þ EigðtÞ

�
t2; ð12Þ

where terms involving Ai, Bi, and Di are guaranteed by
conformal symmetry, and their numerical value depends on

the initial conditions [40] and the short-time dynamics. On
the other hand, the scale breaking term depends linearly on
the effective coupling constant gðtÞ defined in Eq. (5), with
a proportionality constant Ei.
Depending on the time dependence of gðtÞ, one can

change the asymptotic behavior of the moment of inertia.
If the perturbation is relevant, the scale breaking term
proportional to gðtÞ becomes parametrically larger than the
conformal symmetric terms in the long-time limit. A
similar situation can also occur for 0 < γ < 1. In this case
the perturbation is irrelevant to the long-time dynamics, but
the leading correction to the conformal physics is now
given by the scale breaking term: gðtÞ ∝ t−γ .
From Eq. (12), one can show that the aspect ratio takes

the perturbative form in the long-time limit:

lim
t→∞

hr2xiðtÞ
hr2yiðtÞ

≈
Ax

Ay

�
1þ

�
Ex

Ax
−
Ey

Ay

�
gðtÞ

�
: ð13Þ

Conformal symmetry requires that the aspect ratio saturates
to a constant with a correction of O½ðω0tÞ−1�. However, for
irrelevant perturbations with 0 < γ < 1, the aspect ratio
still approaches a constant in the long time limit but with a
different time dependence. If the interaction is relevant
though, γ ≤ 0, the aspect ratio will not saturate due to the
nontrivial time dependence induced by the conformal
breaking interactions encoded in gðtÞ.
Equations (12), (13) constitute one of the main results of

this Letter. It is to be emphasized that the simple depend-
ence on gðtÞ reflects not only the time dependence of aðtÞ,
but also the conformal symmetry that is present at the
SIFP, as is evident in the derivation of Eq. (5). Thus an
experimental confirmation of the Eqs. (12), (13) would
constitute an indirect experimental verification of the
existence of conformal tower states.
Hydrodynamics with time-dependent interactions.—The

above arguments are based on the analysis of the effects of
symmetry breaking interactions on the density matrix of
the system and one would expect that in the regime where
hydrodynamics applies, the results obtained above, e.g.,
Eq. (12), should also be reproduced by a hydrodynamic
theory [13,41,42]. Here we show that this is indeed the
case. To this end we examine the expansion dynamics of a
trapped Fermi gas near the strongly interacting SIFP with
time-dependent interactions, when subject to a quench of
the harmonic trapping potential: ω0→ωf, where ωf ≪ ω0.
For simplicity, we will assume that both the initial and final
trapping potential are isotropic. Thus the only source of
broken conformal symmetry is due to the changing
interaction. To describe the expansion, we make the
following scaling ansatz for the moment of inertia:

hr2iðtÞ ¼
X

i¼x;y;z

hr2i iðtÞ ¼ λ2aðtÞhr2ið0Þ: ð14Þ

(a)

(b) (c)

FIG. 1. (a) Schematic of the effective coupling constant gðtÞ
near a SIFP gðtÞ ¼ 0. The definition of gðtÞ is given by Eq. (5)
near the strongly interacting SIFP, and by Eq. (9) for weak
interactions. The black line represents irrelevant symmetry
breaking interactions, while the red line denotes relevant ones.
The relevancy condition for γ is given by Eq. (8) near the strongly
interacting SIFP, and Eq. (10) for weak interactions. (b) and
(c) The physical time dependence of aðtÞ for relevant and
irrelevant interactions near the strongly and weakly interacting
SIFPs in d ¼ 3, respectively.
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From standard hydrodynamic arguments [13,41,42] and
by performing an expansion near the strongly interacting
SIFP, one can obtain the following differential equation
(see Supplemental Material [24]):

d2λ2aðtÞ
dt2

¼ 2ðω2
0 þ ω2

fÞ − 4ω2
fλ

2
aðtÞ

þ C̃a

�
1

λ4−da ðtÞ
�

1

ãðtÞ
�

d−2
− 1

�

þ 2C̃a

Z
t

0

dt0
�

1

ãðt0Þ
�

d−1 1

λ4−da ðtÞ
dãðt0Þ
dt0

− ζ̃

�
λ2aðtÞ
ã2ðtÞ

�
d−2� 1

λ2aðtÞ
dλ2aðtÞ
dt

−
2

ãðtÞ
dãðtÞ
dt

�
;

ð15Þ

where we have defined

ãðtÞ¼ aðtÞ
að0Þ; C̃a¼

2hCaið0Þ
hr2ið0Þad−2ð0Þ ; ζ̃¼d2

Z
dr
N

ζðr;0Þ
hr2ið0Þ ;

ð16Þ

and ζðr; tÞ is the local bulk viscosity that depends quad-
ratically on the inverse scattering length, 1=aðtÞ2 near the
SIFP [43–46]. The initial conditions are given by λað0Þ ¼ 1

and _λað0Þ ¼ 0. First, let us consider the expansion into free
space (ωf ¼ 0). At the strongly interacting SIFP, aðtÞ ¼ ∞,
the solution to Eq. (15) is λ2ðtÞ ¼ 1þ ðω0tÞ2, the same as
that based on conformal symmetry. For finite aðtÞ, the
solution of Eq. (15) is given by λ2aðtÞ that differ from λ2ðtÞ:
δλ2ðtÞ≡ ½λ2aðtÞ − λ2ðtÞ�=λ2ðtÞ. In the long time limit and
for weak conformal symmetry breaking, one expects that
δλ2ðtÞ to be simply proportional to gðtÞ [see Eq. (12)].
In Fig. 2, we present δλ2ðtÞ in both d ¼ 3 [Fig. 2(a)] and

d ¼ 1 [Fig. 2(b)], and for various values of γ in Eq. (6).
As one can see in both cases the differences become
substantially larger when γ satisfies the relevancy condi-
tion, Eqs. (8). On the other hand, if the symmetry breaking
interaction is irrelevant, then the long-time dynamics
closely track the conformal invariant solution. In addition,
as we show in the inset, δλ2ðtÞ is also proportional to gðtÞ
[see Eq. (12)] for a substantial time window that extends to
a time t about ω0t ≈ 30, which would allow enough time
for observation experimentally. The deviation from linear-
ity at even longer times is due to the fact that the bulk
viscosity ζ is no longer proportional to 1=a2ðd−2ÞðtÞ as aðtÞ
deviates substantially from its critical value in the long-
time limit.
Next, let us consider the case of a quenched harmonic

potential: ω0 → ωf. At the SIFP, both C̃a and ζ̃ vanish.
Equation (15) then predicts undamped oscillations at
exactly 2ωf, identical to the scale invariant solution [47].
When the scale invariance is broken, however, damping

sets in and leads to the thermalization of the gas. In Fig. 3,
we show the numerical solutions of Eq. (15) near the
strongly interacting SIFP in three dimensions [Fig. 3(a)]
and one dimension [Fig. 3(b)], as one moves away from the
SIFP. For an equivalent change in the Hamiltonian, Eq. (1),
the one-dimensional Fermi gas is more stable against
conformal symmetry breaking than its three-dimensional

(a) (b)

FIG. 2. Solutions to the hydrodynamic equations [Eq. (15)] in
free space with a time-dependent scattering length [Eq. (6)] near
the strongly interacting SIFP for (a) 3D and (b) 1D. Here we set
η ¼ 1.5ω0. For relevant symmetry breaking perturbations, i.e.,
γ ¼ −0.5 in 3D and γ ¼ 2.5 in 1D, the deviation from the
conformal solution becomes significant and is accurately de-
scribed by Eq. (12). The inset in (a) shows the linear relation
between δλ2ðtÞ and gðtÞ, which holds for approximately
0 < ω0t < 30. For irrelevant symmetry breaking interactions,
γ ¼ 0.5 in 3D and γ ¼ 2 in 1D, the hydrodynamic simulation
closely tracks the conformal solution in the long-time limit.

(a)

(b)

FIG. 3. Numerical solution to the hydrodynamic equations
[Eq. (15)] when one moves away from the strongly interacting
SIFP for (a) d ¼ 3 and (b) d ¼ 1. To compare these two
situations, the symmetry breaking interactions in the Hamilto-
nian, Eq. (1), are equivalent in d ¼ 3 and d ¼ 1. That is, we use
the same values of the coupling constants, η ¼ ω0, jC̃aj ¼ 0.01,
ζ̃ ¼ C̃2

a for both d ¼ 1, 3 (For repulsive interactions C̃a > 0 for
d ¼ 3 and C̃a < 0 for d ¼ 1), and the same value of jγj (γ < 0 for
d ¼ 3, and γ > 0 for d ¼ 1).
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counterpart. This is exactly what we expect based on the
relevancy criterion given in Eq. (8).
The damping of the oscillation amplitude λ2aðtÞ can be

described by the following phenomenological equation:
λ2aðtÞ ¼ λ2að0Þ exp½−ΓdðtÞt�, where the effective damping
rate ΓdðtÞ is given by

1

ΓdðtÞ
≈
2B
ω0

ã2ðd−2ÞðtÞ
ζ̃

; ð17Þ

for some constant B that depends on the details of the time
dependence of aðtÞ. Equation (17) suggests that equili-
brationj or thermalization can be sped up or slowed down
by changing the time dependence of the scattering length.
Consider the following time-dependent scattering length:

ãd−2ðtÞ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðηtÞ2

p
�
−1=2

: ð18Þ

In the long-time limit, ãd−2ðtÞ ∝ ðηtÞ1=2. In this case, the
damping of the local maxima of the moment of inertia
follows a power-law behavior:

λ2aðtÞ ∝
ω2
0 þ ω2

f

2ω2
0

�
1þ A

ðηtÞα
�
; α ¼ ζ̃

2η
; ð19Þ

for some constant A. In the limit t → ∞, the system
thermalizes to a universal value: λ2aðt → ∞Þ ¼ λ2th ¼
ðω2

0 þ ω2
fÞ=ð2ω2

0Þ. To test this hypothesis, we fit the local
maxima of the oscillations to a power-law decay, and find
results consistent with Eq. (19). The power-law decay is
shown in Fig. 4, and as one can see, is very accurate at
describing the damping physics.

Conclusions.—In this Letter, we provided a useful
criterion for understanding whether a time-dependent scale
breaking perturbation is relevant to the long-time dynamics.
The time dependence of the perturbation can be used
to enhance or diminish the effects of broken conformal
invariance, which can be implemented in experiments. One
unique way of using the time-dependent scattering length is
to engineer power-law thermalization in trapped Fermi
gases. Although we focused on the application to atomic
gases, we stress that these results extend to other quantum
systems with dynamical exponent z ¼ 2, such as the
Lifshitz transition in solid state materials [48].
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