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Chromosomes in the nucleus assemble into hierarchies of 3D domains that, during interphase, share
essential features with a knot-free condensed polymer known as the fractal globule (FG). The FG-like
chromosome likely affects macromolecular transport, yet its characteristics remain poorly understood.
Using computer simulations and scaling analysis, we show that the 3D folding and macromolecular size of
the chromosomes determine their transport characteristics. Large-scale subdiffusion occurs at a critical
particle size where the network of accessible volumes is critically connected. Condensed chromosomes
have connectivity networks akin to simple Bernoulli bond percolation clusters, regardless of the polymer
models. However, even if the network structures are similar, the tracer’s walk dimension varies. It turns out
that the walk dimension depends on the network topology of the accessible volume and dynamic
heterogeneity of the tracer’s hopping rate. We find that the FG structure has a smaller walk dimension than
other random geometries, suggesting that the FG-like chromosome structure accelerates macromolecular
diffusion and target-search.
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The nucleus is the central organelle in a cell for its living
processes from the viewpoint of the central dogma. Its
interior is filledwith highly packed chromosomalDNAs and
a plethora of polydispersed macromolecules with sizes
ranging from a few nanometers to submicrometers.
In processes such as gene regulation, DNA repair, and
epigenetics, these macromolecules must explore the
chromosome-made labyrinth space to find the specific target
sites or counterpart molecules. Novel experiments using a
chromosome conformation capture technique (e.g., Hi-C)
have shown that eukaryotic chromosomes during interphase
fold into hierarchical and fractal condensates, far from
random coils, possessing territory-preserving and knot-free
folding structures, as well as many loops [1,2]. The fractal
globule (FG) was proposed as a minimal chromosome
model [1,3] that captures these essential features of the
human chromosome [2,4]. It is a space-filling, knot-free, and
self-similar polymer condensate [4,5].
As a theoretical model, we consider nucleoplasmic

transport as diffusion in polymer condensates. To date,
a typical approach was to depict the nucleoplasmic
environment as a random structure in terms of continuum
percolation [6,7], fractal space [8,9], or random polymer
architectures [10]. These studies, albeit insightful,
neglected the folding complexity in the chromosome
condensates that can arguably determine the transport
dynamics by reshaping the particle’s accessible volume.
A prominent example from an in vitro experiment is a
tracer particle diffusing through a reconstituted actin net-
work. With the variation of the particle-to-mesh size ratio,

the tracers exhibited various diffusion patterns from a
continuous-time random walk with a power-law trapping
time statistics to a Fickian yet non-Gaussian diffusion
[11,12]. The macromolecules inside a nucleus also showed
that they diffuse differently depending on location (i.e.,
chromosome-occupying or -free region) and physical size
[7,8,13–19].
Based on extensive simulations and scaling theory, in

this Letter, we demonstrate that the chromosome’s native
folding structure does not merely hinder the particle
diffusion but plays a crucial role in transporting the
macromolecules across the nucleus. Using FGs as a proxy
for the interphase human chromosome, we explicitly
simulate the molecular transport therein for various tracer
sizes. We find that the tracer suffers an abrupt geometrical
change of the accessible volume as its size increases to a
critical value. For tracers in the vicinity of the critical size,
the transport shows a structure-dependent critical subdif-
fusion or otherwise is Fickian and structure invariant.
Surprisingly, the walk dimension from the FG is much
smaller than from the equilibrium globule and melted linear
chain. This suggests that the FG’s self-similarly folded
structure, and thus chromosomes, generates an effective
accessible space for large macromolecules to diffuse over
longer distances than in other random geometries. With
such enhanced transport mechanism, the macromolecules
can effectively find their target sites or escape the nucleus.
The model.—We construct the polymers on a 3D cubic

lattice (lattice constant, a ¼ 1) where we set the fraction of
occupied edges to Π ¼ 0.3 (Π ¼ 1=3 is the space-filling
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limit). We consider two polymer models: fractal globule
(FG) and melted linear chain (MLC) [Figs. 1(a) and S1
[20] ]. The FG serves as a mammalian chromosome model
(with the territory-preserving and knot-free characteristics),
whereas the MLC is a well-mixed entangled polymer
condensate [2,3,21,22]. We construct the FG using the
conformation-dependent polymerization algorithm [4,23].
It generates meandering paths that return close to the
previously visited sites without forming knots. To create
the MLC, we simulate a nonbiased self-avoiding random
walk in a closed volume. The MLCs share structural
properties with equilibrium globules (Fig. S3 [20]).
We also study a random bond percolation clusters (non-
polymeric) and Moore curves (mathematical fractal)
serving as comparisons (see Supplemental Material [20],
Figs. S1–S3).
We represent the polymer segments as hemisphere-

capped cylinders of radius Robs [Fig. S1(b) [20] ]. They
exclude the volume of the embedded tracer of a radius R.
Because of the excluded volume (EV) interaction, we map
the system onto a point-particle problem with an effective
radius Reff ¼ Rþ Robs, which is the key parameter in our
model. Because the chromosome dynamics is much slower
than the macromolecular diffusion studied here (Tables S1
and S2 [20]), we assume that the obstacles are immobile
[24–54]. Effects of dynamic FGs are discussed in the
Supplemental Material [20]. To generate tracer trajectories,
we integrate the overdamped Langevin equation for a given
obstacle architecture and Reff . The EV interaction is
assumed to be hard core and treated kinematically via
rejection sampling [55–57]; see Ref. [20] for the full
description.

Geometry-induced anomalous diffusion.—Nucleoplasmic
transport ofmacromolecules was experimentally investigated
using proteins [7,8,13], mRNAs [14,15], viral capsids [16],
and organelles [17]. These experiments showed that the
mean-squared displacement (MSD) increases with time as
hr2ðtÞi ∝ tα, where α ∈ ð0; 1� is the anomalous exponent
[58]. Importantly, α is system specific, and depends appreci-
ably on the macromolecular size and the chromosomes’
folding status.
To understand such dynamic heterogeneity in the experi-

ments, we focus on how the tracer diffusion changes
with its size Reff . Figure 1(b) shows representative MSD
curves in FGs for increasing Reff . Each curve corresponds
to the time- and ensemble-averaged MSD over 102 obstacle
configurations and 102 trajectories, each 107 time steps
long.
The plot shows that the tracer experiences different

geometries that depend on its size. Studying sample
trajectories supports this conclusion (Fig. S4 [20]). We
find three key observations: (i) For sufficiently small sizes
(Reff ¼ 0.1), the tracer exhibits a Fickian diffusion as in
free space. (ii) Tracers larger than this limit interact with the
obstacle at the length scales or timescales of hr2ðtÞi ∼ a2,
giving rise to a transient subdiffusion (Reff ¼ 0.6). Then,
the tracers recover a Fickian diffusion with a reduced
diffusivity. (iii) Remarkably, when Reff is close to a critical
value Rcr ¼ 0.625, the tracers have a several-decade long
subdiffusion regime with α ≃ 0.5 (red line) at the length
scales of hr2i ≳ a2. This is reminiscent of anomalous
diffusion on a critical percolation clusters [6,59]. The
tracer appears as hopping between the nearest cavities
through a narrow hole (Fig. S4 [20]). (iv) If the tracers are
larger than Rcr, they cannot access the whole space but
undergo confined diffusion (Reff ¼ 0.8). The tracer trans-
port in the MLC is similar to that in the FG, but with a
smaller exponent α at Reff ≃ Rcr (Fig. S5 [20]).
To quantify the relationship between the anomalous

exponent, tracer size, and obstacle geometry, we calculate
how the MSD slope changes over time, defining the
smallest slope as α ¼ αmin (Fig. S6 [20]). In Fig. 2(a),
we show how α changes with Reff for the FG andMLC. The
plot shows that (i) α tends to decrease as Reff increases.
(ii) α decays in the same manner regardless of the obstacle
geometry for the tracers of Reff < Rcr. (iii) α drops
significantly for the tracers of Reff ≳ Rcr, where the
diffusion dynamics differ depending on the obstacle
geometry.
EV motifs.—To gain a physical understanding of these

findings, we study the local obstacle configurations that
restrict the tracer while moving between cubic cells. We
find 14 possible variants that we call excluded volume (EV)
motifs [cartoons in Fig. 2(b) and Fig. S7 [20]).
We label these motifs with indices ðm; nÞ indicating the
number of obstacle-occupied edges (m) and vertices (n).
Figure 2(b) also shows the occurrence probability Pðm;nÞ for

FIG. 1. (a) Polymer configurations: Fractal globule and melted
linear chain. Red-to-blue color indicates increasing monomer
index. Dots represent macromolecules exploring the FG and
MLC geometries. (b) Tracer MSDs in FGs. From top to bottom,
Reff ¼ 0.100, 0.600, 0.630, and 0.800. The red curve shows the
critical subdiffusion with α ≃ 0.5.
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each EV motif; red and blue bars correspond to the FG and
MLC, respectively. The horizontal lines are Pðm;nÞ for
random bond percolation serving as a reference case we
derived theoretically (see the expressions in Ref. [20]).
Apart from overall systematic differences between the FG

andMLC,we see that the (1,4)motif is themost abundant for
both geometries. Additionally, below the icon for each
motif, we indicate the Reff values when they get closed.
For example, if Reff ≳ 0.5, three motifs—(4,4), (3,4), and
ð2; 4Þa—become sealed off. This causes the tracer to make
detours because every instance of (4,4), (3,4), or ð2; 4Þa that
belonged to a path is cut. If the tracer becomes even larger,
the diffusive dynamics will not significantly change until
Reff ¼ 0.586 is reached. At this point, the ð2; 4Þb motif also
closes. This analysis explains why α decays as Reff grows
and why this occurs in steps. Importantly, we find that the
critical subdiffusion occurs [in Fig. 2(a) with α ≃ 0.5] when
the (1,4) motif gets closed at Reff ¼ 0.625. We observe the
same behavior in MLCs. Thus, for chromosomelike
obstacles, Rcr has a geometrical interpretation: it is the point
when the most abundant motif closes.
The accessible lattice and its percolation structure.—To

better understand the relationship between the obstacle
geometry and the transport dynamics, we construct the
accessible lattice (AL). An AL is a bond percolation cluster
where the vertex symbolizes the unit cell’s center. Two
vertices are connected if the EV motif separating them is
open [see Fig. 2(c) for an example]. The AL represents the
network of possible tracer paths that depends on the tracer’s
size and obstacle geometry.
The key parameter that characterizes the AL is the

percolation density popen or the fraction of open EV motifs.
Similar to the trend for α in Fig. 2(a), Fig. 2(d) shows that
popen has a staircase decrease with increasing Reff [60]. As
noted above, α decreases significantly when the (1,4) motif
becomes blocked at Reff ≈ Rcr. This occurs close to the
critical bond density pc ≈ 0.2488 associated with the
random Bernoulli percolation cluster. The critical connec-
tivity expects the transport should be subdiffusive, as

justified by the observed onset of the critical subdiffusion
near Reff ¼ 0.625.
Notably, when popen ≈ pc, the FG and MLC have very

similar ALs, which are akin to the random Bernoulli
percolation. The largest AL cluster in both FGs and
MLCs has the same fractal dimension as in the Bernoulli
percolation df ≈ 2.5 [Fig. S8(a) [20] ]; the ALs have the
same cluster size distribution [FG, Fig. S8(b) and MLC,
Fig. S8(c) [20] ] as the Bernoulli percolation at p ¼ popen;
additionally, the scaling between Euclidean and chemical
distance [Fig. S8(d)] and the two-point correlation [Fig. S8
(e)] are similar to each other. For a complete analysis [61],
see Figs. S8 and S9 and accompanying text [20].
Walk dimensions and their geometry dependence.—The

AL analysis suggests that the tracers have the same critical
subdiffusion in FGs andMLCs with the walk dimension (or
α) predicted by the random walk on the Bernoulli perco-
lation. However, the walk dimension is nonuniversal and
depends on the obstacle organization. To demonstrate this,
we use results from random percolation theory, where the
MSD for a random walker obeys the scaling relation [59]

hr2ðtÞi ¼ t2=d
0
wFðt=tξÞ; ð1Þ

where d0w is the walk dimension for tracers from both
infinite and finite percolation clusters, and FðxÞ is a scaling
function. d0w is related to the anomalous exponent by
α ¼ 2=d0w, and FðxÞ ∝ 1 for x ≪ 1 and FðxÞ ∝ x1−2=d

0
w

for x ≫ 1. For t > tξ, we expect to see Fickian diffusion.
To extract d0w, we use Eq. (1) to rescale the simulated

MSD curves and vary d0w to maximize the data collapse
[62]. In Fig. 3(a), we show the result for the FG where Reffs
are close to Rcr. For large times, the collapse is excellent
when d0w ¼ 3.84ð�0.23Þ. However, there is some disagree-
ment at short times (t ≪ tξ). This regime corresponds to
diffusion over the length scales shorter than the lattice
constant where we do not expect Eq. (1) to hold.
The same scaling form holds for the MLC, but

the exponent deviates significantly from the FG’s,

FIG. 2. (a) Anomalous exponent (α ¼ αmin) vs Reff . The borders between shaded regions show the threshold Reff s when some EV
motifs close. (b) The representative eight EV motifs and their occurrence probability Pðm;nÞ, where m and n are the numbers of blocked
edges and vertices. Below each motif, we denote the threshold Reff when the motif closes. The complete list of 14 EV motifs is depicted
in Fig. S7. (c) Example showing how we create the accessible lattice (AL): (Top) an obstacle geometry with two exemplified motifs,
(1,4) and (3,4). If 0.5 < Reff < 0.625, the (1,4) is open (red) but the (3,4) (blue) closed. (Bottom) The AL in red marks the open (1,4)
motif. (d) Fraction of open motifs popen as a function Reff . The dotted line shows pc for the Bernoulli bond percolation (cubic lattice).
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d0w ¼ 5.71ð�0.94Þ (Fig. S10 [20]). Using d0w we estimate
the anomalous exponent at the critical condition Reff ≈ Rcr
via α ¼ 2=d0w, giving α ¼ 0.52 (FG) and 0.35 (MLC).
These values agree with the estimate of the MSD slopes that
we obtained from Fig. 1(b) and Fig. S5 [20]. We also study
d0w in the random bond percolation (Fig. S11 [20]), but we
cannot collapse the data for a single value d0w.
To cross-check the walk dimensions, we measure them

in a different way using a scaling relation for the displace-
ment PDF in the anomalous regime of t < tξ [Fig. 3(b)]
[59,66]:

rPðrjtÞ ∝ ðr=t1=dwÞdf exp½−Aðr=t1=dwÞdw=ðdw−1Þ�: ð2Þ

Here, r ¼ jrj, dfð¼ 2.52Þ is the fractal dimension, dw is the
infinite-cluster walk dimension (empirically, dw ¼ 0.76d0w
[59]), and A is a constant. Using simulated data, we
calculate PðrjtÞ and rescale it according to Eq. (2) (see
details in the Supplemental Material [20]). By varying dw,
we find the best collapse to be dw ¼ 3.49ð�0.04Þ (FG) and
5.62ð�0.26Þ (MLC), which is consistent what we found

using Eq. (1) via dw ≈ 0.76d0w. Repeating this analysis for
the annealed Moore curve, we confirm that the critical
diffusion we observe in FGs are independent of the
preparation method (Figs. S12 and S13 and Sec. IX
[20]). Therefore, we conclude that the transport dynamics
show a strong dependence on the chromosome structure.
However, we find that the AL—the network structure of

accessible volumes—is insufficient to explain that the d0ws
are nonuniversal. We calculate the MSD from simulated
random walks [67] on the ALs taken from the generated
FGs and MLCs at Reff ≈ Rcr. These MSDs are found to be
the same as those from random walks on the Bernoulli
percolation at p ¼ popen (Fig. S14). The AL model gives
αAL ≈ 0.63 (FG) and ≈0.58 (MLC). This difference only
reflects different popen. The αALs are not consistent with the
αs (or 2=d0w) in the FG and MLC.
One reason that the diffusion dynamics is not fully

explained by the AL is because it does not incorporate
the dynamic heterogeneity in the tracer’s hopping rates.
Close to the critical pointReff ≈ Rcr, we notice that there is a
broad sojourn-time distribution when tracers move into
connected AL sites (Fig. S15 [20]). This means that edges
have a spectrum of hopping rates that are associated with the
EVmotifs’open area Sðm;nÞ. Based on Sðm;nÞ, we define edge
strengths (see Ref. [20]) and find that there are several weak
edges (0 < Sðm;nÞ ≪ a2) that hardly allow tracers to pass.
In Fig. 3(c), we compare the mass fraction of the largest

(spanning) cluster in the FG and MLC before and after
trimming the weak edges (see Fig. S16 as an example).
Before trimming (circle), the ALs of the FG and MLC have
spanning clusters of comparable mass and a similar number
of weak edges. However, after removing the weak edges
(square), the FG’s spanning cluster becomes significantly
larger than the MLC’s. This suggests the mechanism of the
better transport efficiency of the FG-like chromosomes
compared to MLCs, with a smaller d0w. Figure 3(d)
recapitulates this idea. Here, we schematically depict the
spanning cluster (black), the weak edges (red), and small
clusters (green) connected to the spanning cluster in the
AL. In the MLC, the weak edges topologically act as a
bottleneck between the spanning and the small clusters. By
contrary, the FG’s hierarchical folding renders the acces-
sible volume to contain less bottlenecks. This leads to a
larger spanning cluster and thus enhances diffusion.
We note that the critical subdiffusion and the enhance-

ment of diffusion in FG geometries are preserved even if
our FG geometries are dynamic or irregularly patterned in
terms of EV motifs. See our further simulation studies
(Figs. S17 and S18, Secs. X and XI) in the Supplemental
Material [20]. We emphasize that the physical mechanisms
explaining our findings differ from Ref. [68] who studied
point particles exploring crumpled globules with weak
absorption.
Implications for biological systems.—In Fig. 3(e), we

compare the walk dimensions from the FG and MLC to five

FIG. 3. (a) Rescaled MSDs using Eq. (1) for five different Reff s
in FGs. This analysis yields d0w ¼ 3.84. The solid line depicts the
expected scaling at t → ∞. (b) Rescaled displacement PDFs
PðrjtÞ using Eq. (2) at five lag times and Reff ¼ 0.63 in FGs. The
best collapse yields dw ¼ 3.49 along with the corresponding fit
(line). (c) Mass fraction of the largest cluster in the FG (red) and
MLC (blue) at Reff ≈ Rcr. The symbol represents the results for
the original ALs (circle) and the ALs after the weak edges are
removed (square). Details are described in Ref. [20]. (d) Sche-
matics explaining the difference in the walk dimensions between
the FG and MLC geometries. The black, red, and green lines
constitute the original AL and correspond to the spanning cluster,
weak edges, and isolated small clusters, respectively. The small
clusters are the fraction of the AL connected to the spanning
cluster via the weak edge. (e) The walk dimensions obtained from
(a) and (b) are shown for the FG and MLC, with the speculated
d0w ¼ 2=α from several experiments [8,17,63–65].
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experimental values (Table S3 [20] shows thirteen
[13,16,18,41,69–72]). These experiments tracked diffusing
macromolecules of different sizes in cell nuclei and
measured d0wð¼ 2=αÞ. While most values appear to lie
between 2 and 4, they cover a broad spectrum—at least
∼2–6. Such diversities may result from multiple mecha-
nisms such as chromatin dynamics [18,73] and their
structural heterogeneity [8]. Nevertheless, we find a few
results that are close to d0w for the FG [63] and MLC [17].
In addition to the walk dimension, we may relate our

results to the sizes of real macromolecules and discuss
observed diffusion dynamics. We assume that our FG
model represents the 11-nm beads-on-a-string chromatin,
and the lattice constant is roughly the chromatin’s Kuhn
length which ranges 15–60 nm [74,75]. Under such
conditions, we expect that average-sized proteins (of radius
2 nm) have Reff ≈ 0.13–0.5. For molecules of radii < 1 nm
(e.g., ATPs and nucleotides), their diffusion is almost
Fickian, and is hardly affected by the chromosome struc-
ture. We expect to see critical subdiffusive behavior when
the macromolecule radii are between 5 nm (e.g., RNA
polymerase) and 25 nm (e.g., RNAs and small protein
aggregates). This estimate suggests that the molecular
diffusion inside the nucleus is size sensitive and that nano-
to sub-micron-sized biomolecules exhibit various diffusion
dynamics. Indeed, this conclusion is in agreement with an
experiment [63] showing that 5-nm gold particles
immersed in nucleoplasms exhibited subdiffusion
with α ≈ 0.5–0.6.
To conclude, we studied particle diffusion in chromo-

somelike polymer structures to better understand how a
DNA-filled nucleus may cause large proteins to subdiffuse.
As such, any deviation from our theory indicates the
presence of additional mechanisms, such as interactions
with other macromolecules, binding to the polymer’s
segments, or nonspherical tracer shapes. Therefore, our
work is useful to researchers studying protein-DNA target
search, protein aggregation, or diffusion-limited gene
regulatory circuits.
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