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We generalize the flux insertion argument due to Laughlin, Niu-Thouless-Tao-Wu, and Avron-Seiler-
Zograf to the case of fractional quantumHall states on a higher-genus surface.We propose this setting as a test
to characterize the robustness, or topologicity, of the quantum state of matter and apply our test to the
Laughlin states. Laughlin states form a vector bundle, the Laughlin bundle, over the Jacobian—the space of
Aharonov-Bohm fluxes through the holes of the surface. The rank of the Laughlin bundle is the degeneracy of
Laughlin states or, in the presence of quasiholes, the dimension of the corresponding full many-body Hilbert
space; its slope, which is the first Chern class divided by the rank, is the Hall conductance. We compute the
rank and all the Chern classes of Laughlin bundles for any genus and any number of quasiholes, settling, in
particular, theWen-Niu conjecture. Then we show that Laughlin bundles with nonlocalized quasiholes are not
projectively flat and that the Hall current is precisely quantized only for the states with localized quasiholes.
Hence our test distinguishes these states from the full many-body Hilbert space.
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Introduction.—Topological states describe special phases
of strongly correlated quantum matter arising at low temper-
atures, which exhibit certain remarkable properties, such as
precise quantization phenomena in materials with impurities,
fractional and non-Abelian statistics, and ground state degen-
eracy robust under local perturbations. These unusual proper-
ties make the topological states suitable for a range
of applications from quantum metrology to fault-tolerant
quantum computing.
In this Letter, we suggest a concrete criterion that

distinguishes between topological and nontopological states
of matter. The criterion is of geometric nature and applies to
situations where the ground state of the system is degenerate.
Best known examples of topological states of matter

include superconductors, spin liquids, quantum Hall states,
etc. We focus here on the fractional quantum Hall effect,
where explicitly defined trial states are available for
investigation, although the criterion is potentially appli-
cable to a broader class of situations.
Projective flatness test for the ground state bundle.—

Here we describe our test in a general setting. We consider
the situation, when the ground state is degenerate and
separated by a gap from the rest of the spectrum, and
depends continuously on n classical parameters forming an
n-dimensional manifoldM. We assume that the degeneracy
r of the ground state is constant over the whole parameter
manifold. Our ground states thus form a rank-r Hermitian
vector bundle V over the parameter spaceM. The adiabatic
theorem applies to determine the Berry connection,
whose curvature R is in general non-Abelian, as, e.g., in

Ref. [1]. Then a generic bundle V of quantum states can be
assigned a set of cohomology classes, represented by the
traces of powers of the Berry curvature chmðVÞ ¼
½ð−1Þm=ð2πiÞmm!�trRm, called the Chern characters. In
particular ch0ðVÞ ¼ r is the degeneracy, ch1ðVÞ ¼ c1ðVÞ
the first Chern class and chi is a 2i-cohomology class onM,
i ¼ 0;…; ½n=2� (Chern characters are a more convenient
notion than the more familiar Chern classes ciðVÞ. They
are polynomial functions of the latter: ch0ðVÞ ¼ r,
ch1ðVÞ ¼ c1ðVÞ, ch2ðVÞ ¼ 1

2
ðc21 − c2Þ, etc. In general,

the full Chern class is recovered from the Chern characters
by the formula cðVÞ ¼ c0ðVÞ þ c1ðVÞ þ � � � þ cmðVÞ ¼
exp

P
i≥1ð−1Þi−1ði − 1Þ!chiðVÞ).

Furthermore, the bundles of the topological states are
characterized by their robustness against perturbations. We
formalize this condition as the requirement that the adia-
batic transport of the quantum states of V along a path γ in
the parameter space M is independent of continuous
deformations of the path and depends only on its topology,
possibly up to a Uð1Þ Berry phase. In more precise terms,
we require that the adiabatic transport defines a projectively
flat connection on V.
For example, in Fig. 1, the adiabatic transport along the

curves γ1 and γ2, which can be continuously deformed into
each other, would have the holonomies equivalent up to the
Uð1Þ phase, while the transport along γ3 could yield an
a priori different holonomy.
Now, by a standard result on complex vector bundles [2],

if V is projectively flat then its total Chern character
chðVÞ ¼ P

n
i¼0 chiðVÞ simplifies and is given by

PHYSICAL REVIEW LETTERS 128, 036602 (2022)
Editors' Suggestion

0031-9007=22=128(3)=036602(6) 036602-1 © 2022 American Physical Society

https://orcid.org/0000-0001-7477-2722
https://orcid.org/0000-0002-5783-0481
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.036602&domain=pdf&date_stamp=2022-01-21
https://doi.org/10.1103/PhysRevLett.128.036602
https://doi.org/10.1103/PhysRevLett.128.036602
https://doi.org/10.1103/PhysRevLett.128.036602
https://doi.org/10.1103/PhysRevLett.128.036602


chðVÞ ¼ re
1
rc1ðVÞ:

In other words, the higher Chern characters of a projec-
tively flat bundle V are essentially powers of its first Chern
class:

chiðVÞ ¼
½c1ðVÞ�i
i!ri−1

; 1 ≤ i ≤
�
n
2

�
: ð1Þ

We claim that these relations can be used to test the
topologicity for quantum states of matter. Here is the
strategy as to how the geometric test can be implemented:
(i) Given a parameter space M, and a bundle of quantum
states V, compute the non-Abelian Berry curvature R,
(ii) take itsmth powerRm, (iii) compute its trace trRm, and
(iv) check whether trRm ¼ ð1=m!rm−1ÞðtrRÞm in coho-
mology. If this relation does not hold, then the quantum
states in V are not topological in the sense above.
If r ¼ 1, the ground state is nondegenerate and the vector

bundle becomes a line bundle, for which any connection is
projectively flat. Also, parameter spaces of the real dimen-
sion dimM ≤ 3 do not support higher Chern characters.
Therefore the projective flatness test only gives nontrivial
results when r > 1 and dimM ≥ 4. In particular, for
Laughlin states the crucial observables, that allow one to
distinguish between topological and nontopological states
of matter, appear in genus g ≥ 2.
Laughlin states on Riemann surfaces.—A Laughlin trial

state, Ref. [3], describes the fractional quantum Hall effect
for filling fractions of the form 1=β, where β is an odd
integer. First define an N-particle Laughlin state with p
quasiholes on the Riemann sphere (g ¼ 0) for any positive
integer β as follows:

ΨL ¼ Pðz1; z2;…; zNÞ
Y

1≤n<m≤N
ðzn − zmÞβ; ð2Þ

here P is a completely symmetric polynomial inN variables
z1;…; zN ∈ C, of degree at most p in each zn. Thus we do
not restrict to the fermionic case and consider the bosonic
states (even β) as well. Besides the (anti-)symmetry for
(odd) even β, the two other defining properties of ΨL are
the vanishing on the diagonal Δ ¼∪n<m fzn ¼ zmg to the
order β and total degree in each variable zn being equal to
the magnetic flux, Nϕ ¼ pþ βðN − 1Þ. The vanishing on

the diagonal is a simplified model for the Coulomb
interactions between particles. The total degree condition
ensures that each electron is on the lowest Landau level for
the magnetic field with flux Nϕ.
The full many-body Hilbert space of functions of

the form (2) has dimension ðNþp
p Þ, by the number of

linearly independent polynomials P. It has a special one-
dimensional subspace of states with p quasiholes localized
at positions w1; w2;…; wp:

ΨL ¼
Yp
i¼1

YN
n¼1

ðzn − wiÞ
YN
n<m

ðzn − zmÞβ: ð3Þ

As long as the positions of the quasiholes are fixed, the
states above do not depend on any continuous parameters.
The standard way to bring a parameter space into play in

QHE is to consider Laughlin states on a Riemann surface Σ
of genus g > 0 [4–8]. The definition here mimics the one
given above for the sphere [9]. Namely, we require the
(anti-)symmetry for (odd) even β and vanishing on the
diagonal Δ ¼∪n<m fzn ¼ zmg to the order β. The analog of
being a degree-Nϕ polynomial on a compact Riemann
surface is the condition that ΨL is a section of a degree-Nϕ

holomorphic line bundle L. Now, the latter come with a
natural parameter space: he moduli space of degree-Nϕ line
bundles is the Picard variety PicNϕðΣÞ isomorphic to a
g-dimensional complex torus. These inequivalent con-
figurations of the magnetic field of flux Nϕ through the
surface are obtained by applying the Aharonov-Bohm
solenoid fluxes through the 2g cycles on the surface,
fϕaga¼1;…;2g ∈ ½0; 2π�2g, see Fig. 2.
This is precisely the setting of a higher genus surface

considered in the integer QHE case in Ref. [8], and
generalizing Laughlin’s gauge argument [10] (for the case
of a torus see Refs. [5–7]). Following the standard argu-
ment of these references, when changing the flux through
the cycle b of the surface, ϕb ¼ −Vbt adiabatically with
time t, the Hall current through the cycle a equals Vb times
the Hall conductance,

Ia ¼ ðσHÞabVb;

which is the first Chern class of the Laughlin bundle over
PicNϕ divided by its rank in case of degeneracy,

FIG. 2. AB phases on the genus-g Riemann surface.

FIG. 1. The adiabatic transport of quantum states in the
parameter space M along the curves γ1, γ2, γ3 starting and
ending at the same point x0.
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σH ¼
X
a;b

ðσHÞabdϕa ∧ dϕb ¼
c1ðVÞ
r

: ð4Þ

Thus we need to compute the rank and the first Chern class
of the Laughlin bundle.
Quantum optimal packing problem.—We begin by

computing the rank of the Laughlin bundle, i.e., the
degeneracy of states (3) on a genus-g Riemann surface.
The space of sections of a holomorphic line bundle S over a
complex manifold X is denoted by H0ðX; SÞ and its
dimension by h0ðX; LÞ. The main tool for computing
h0ðX; SÞ is the Hirzebruch-Riemann-Roch formula

XdimCX

i¼0

ð−1ÞihiðX; SÞ ¼
Z
X
ec1ðSÞtdðXÞ;

where hiðX; SÞ are the dimensions of cohomology groups
of S, c1ðSÞ is the first Chern class of S, and tdðXÞ is the
Todd class of X. In the case of Laughlin states, one can use
the Kodaira vanishing theorem to show that the higher
cohomology groups in HiðX; SÞ, i > 0 vanish and what
remains in the left-hand side is just h0ðL;XÞ, which is the
degeneracy of ground states:

r ¼
Z
X
ec1ðSÞtdðXÞ: ð5Þ

We do not recall the general definition of the Todd class
here, but an expression for tdðXÞ in the case of Laughlin
states is given below in Eq. (7). Let us describe X and S in
this case.
As a multiparticle wave function, the Laughlin state is

naturally a function on the Cartesian product of N copies of
the Riemann surface ΣN . More precisely it is a section
of the line bundle L⊠N ¼ π�1L ⊗ � � � ⊗ π�NL over ΣN,
which is (anti-)symmetric for (odd) even β and vanishes
on the diagonal to the order β. Twisting L⊠N by the divisor
β times the diagonal Δ ¼∪N

n<m fzn ¼ zmg we reinterpret a
Laughlin state as a completely symmetric section of the
bundle S ¼ L⊠Nð−βΔÞ over the Nth symmetric power of
the Riemann surface X ¼ SNΣ ¼ ΣN=SN . Note that SNΣ is
a smooth complex manifold: indeed, locally unordered sets
fz1;…; zNg ofN complex numbers are parametrized by the
coefficients of the polynomial ðz − z1Þ � � � ðz − zNÞ.
For N ≥ 2g − 1, there is a particularly useful description

of the Nth symmetric power X ¼ SNΣ of a Riemann
surface as a holomorphic bundle of projective spaces
PN−g over the Picard group PicNðΣÞ of the surface, [11]
(Sec. 3.a), see Fig. 3 (The Picard group is a g-dimensional
complex torus isomorphic to the Jacobian of Σ, but the
isomorphism is not canonical. We use PicN rather than the
Jacobian because it makes the map X → PicNðΣÞ canonical
and also because it allows us to distinguish PicN from
another complex torus responsible for the AB fluxes, which

will appear in the next section). PicNðΣÞ carries a natural
(1,1)-cohomology class Θ, Poincaré dual to the theta
divisor, and X carries another cohomology class ξ, dual
to the divisor of configurations of N points where at least
one point coincides with a fixed point on Σ. The class ξ
restricts to the hyperplane class in each fiber PN−g.
We adopt the notation Θconf for the class Θ in PicNðΣÞ,

arising from the configurations ofN points on the surface in
order to distinguish it from another class Θ in PicNϕðΣÞ on
the space of AB fluxes. The first Chern class of the line
bundle S ¼ L⊠Nð−βΔÞ over X ¼ SNΣ then equals

c1ðSÞ ¼ βΘconf þ pξ; ð6Þ

where p ¼ Nϕ − βðN þ g − 1Þ, and all three classes Θconf ,
ξ, and c1ðSÞ lie in H2ðX;ZÞ. Further, the Todd class of X
reads

tdðXÞ ¼ ðtdξÞN−g−1 exp

�
Θconf

tdξ − 1 − ξ

ξ

�
; ð7Þ

where tdξ ¼ ½ξ=ð1 − e−ξÞ�. This is a mixed degree even
cohomology class spanning all even degrees from 0 to
2 dimC X. Plugging this into Eq. (5) we arrive at the
following formula for the dimension of the vector space
of Laughlin states, r ¼ rðN; β; p; gÞ, and consequently for
the rank of the Laughlin bundle:

r ¼
Xg
k¼0

�
g

k

��
N − gþ p

k − gþ p

�
· βk; ð8Þ

with the convention ðabÞ ¼ 0 if b < 0. Since both c1ðSÞ and
tdðXÞ are expressed in terms of ξ and Θconf and that the
intersection numbers of these two classes are known,
deducing the formula for the rank r is a purely combina-
torial problem, but it is not entirely trivial; actually, the
computation involves the Lagrange inversion theorem [12].
It follows from Eq. (8) that there are no Laughlin states

for p < 0, in other words, for a given filling fraction 1=β
and magnetic flux Nϕ, the configuration of N ¼ Nmax

particles, where

FIG. 3. Representation of the Nth symmetric power of the
Riemann surface as projective spaces PN−g fibered over the
Picard variety.
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Nmax ¼
�
Nϕ

β

�
þ 1 − g ð9Þ

is optimally packed in the sense that no extra particles can
be added on the lowest Landau level. Moreover, the state
with N ¼ Nmax when Nϕ is divisible by β, is incompress-
ible, and this result demonstrates the Wen-Zee shift formula
Ref. [13]. In the latter case, the degeneracy of the Laughlin
states

rjp¼0 ¼ βg

is purely topological, that is, independent of N. Thus our
result establishes the topological degeneracy of Haldane-
Rezayi and Wen-Niu [4,14]. The explicit expression for the
Laughlin states in the optimally packed configurations we
refer to Ref. [9].
For the case p > 0, formula (8) computes the dimension

of the full many-body Hilbert spaces of Laughlin states,
corresponding to suboptimally packed configurations, gen-
eralizing the ðNþp

p Þ degeneracy of Eq. (2) on the sphere
[15], [Eq. (3)] and [16] [Eq. (6)] on the torus.
Now, the case of p > 0 quasiholes localized at fixed

points w1;…; wp corresponds to a subspace of the full
many-body Hilbert space analogous to the one in Eq. (3),
but also degenerate for g > 0. The same calculation goes
through in this case with the replacement of the original line
bundle L by the line bundle Lð−w1 − � � � − wpÞ. Thus
plugging Nϕ → Nϕ − p we obtain that the dimension of
this subspace again equals βg.
Chern characters of the Laughlin bundle—Turning on

the solenoid AB fluxes, see Fig. 2, brings in the parameter
space M ¼ PicNϕðΣÞ of real dimension 2g: the number of
independent fluxes through cycles on the surface. In this
setting, the Hall conductance σH for IQHE was computed
in Ref. [8] as the first Chern class onM. Here we generalize
this result to the FQHE.
Again we define Laughlin states as sections of a line

bundle S ¼ L⊠Nð−βΔÞ, but now over the product space
M × X, where once more, X ¼ SNΣ is viewed as a PN−g

bundle over the Picard variety PicNðΣÞ. Since as manifolds
both M ¼ PicNϕðΣÞ and PicNðΣÞ are isomorphic to the
same 2g-dimensional torus, we distinguish them in what
follows by putting prime on the object related to the latter.
In order to describe how the AB fluxes couple to the

electronic states, we makes use of the canonical basis of
one-cycles on Σ, which are g pairs of simple loops
ðγa; γgþaÞ for each handle of the surface. Let ðαa; βaÞ be
the corresponding dual basis of harmonic one-forms on Σ.
Then insertion of AB fluxes ϕa, ϕb leads to the change
of the one-particle Uð1Þ electromagnetic connection ∇z →∇z þ

Pg
a¼1ðϕaαa þ ϕaþgβaÞ, [8], [Eq. (3)]. Taking the

trivial connection along PicNϕðΣÞ, ∇ϕ ¼ P
aðdϕa∂ϕa

þ
dϕaþg∂ϕaþg

Þ and summing over all N particles, we arrive

at the expression for the first Chern class generalizing
Eq. (6),

c1ðSÞ ¼ βΘconf þpξþ
Xg
a¼1

ðdϕa ∧ dϕ0
aþgþdϕ0

a ∧ dϕaþgÞ;

where the novel term is a two-from with one component
along M ¼ PicNϕðΣÞ and the other, primed, component
along PicNðΣÞ.
The Laughlin bundle V is a rank-r vector bundle over

M ¼ PicNϕðΣÞ, whose fibers are vector spaces of Laughlin
states. To compute its Chern characters we apply the
Grothendieck-Riemann-Roch theorem,

chðVÞ ¼
Z
X
ec1ðSÞtdðXÞ;

and the result of the integration over the fibers X in
the product X ×M is the Chern character of V on M.
Performing the integration we obtain

chmðVÞ ¼
Xg
k¼m

�
g −m

k −m

��
N − gþ p

k − gþ p

�
βk−m

Θm
flux

m!
: ð10Þ

As a consistency check, for m ¼ 0 we do recover Eq. (8)
for the rank. The theta class Θflux can be represented
as Θflux ¼

Pg
a¼1 dϕa ∧ dϕaþg.

For p ¼ 0 (no quasiholes), only last term on the rhs of
Eq. (10) remains, and the total Chern character becomes

chðVÞ ¼ re
1
βΘflux ; r ¼ βg: ð11Þ

In particular, the first Chern class is given by

c1ðVÞ ¼ βg−1Θflux; ð12Þ

and Eq. (11) is consistent with Eq. (1) for projectively flat
bundles, confirming the topological nature of FQHE states.
Equation (11) stands unchanged for the case of p localized
quasiholes, where the degeneracy is still βg, as discussed in
the end of Sec. 4.
However, when we have p ≥ 1 nonlocalized quasiholes,

the relation (1) does not hold as soon as g ≥ 2. We can
conclude that in this case the Laughlin bundle is definitely
not projectively flat.
We also note that Eq. (10) remains valid for any space

of ground states topologically equivalent to the Laughlin
states, i.e., which can be obtained from the latter by a
continuous deformation, preserving the ground state degen-
eracy and the gap. Under a deformation like that the vector
bundle of ground states changes continuously and its
characteristic classes remain the same.
Hall conductance and the projective flatness test.—

Following Refs. [5–7] we now consider the charge
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transport on our surface for g ≥ 1 [8]. If the Laughlin state
is completely filled (9) or else if the p quasiholes are
completely localized, the topological contribution to the
Hall current reads Ia ¼ σa;aþgVaþg. Thus changing the AB
flux through the cycle aþ g of the surface induces the Hall
current in the dual cycle a controlled by the precisely
quantized Hall conductance two-form, given by Eq. (4),

σH ¼ 1

β
Θflux:

We stress that this equation remains exact for any number of
particles N. Next we increase the magnetic flux Nϕ until we
find ourselves in the situation when there are more quasi-
holes than the number of impurities that can localize them.
For p nonlocalized fluxes of the magnetic field, we are in
the setting of the full many-body Hilbert space (2), whose
dimension, i.e., the rank of the corresponding Laughlin
bundle, is given by Eq. (8). Its first Chern class reads

c1ðVÞ ¼
Xg
k¼1

�
g − 1

k − 1

��
N − gþ p

k − gþ p

�
βk−1Θflux:

These states no longer pass the projective flatness test, and
one of the immediate most striking consequences is that the
Hall current is no longer precisely quantized. Indeed, taking
the large N asymptotics of the rank and the first Chern class,
while keeping p and g fixed, we arrive at the following
asymptotic expression for the Hall conductance:

σH ¼
�
1

β
−

p
β2gN

þOð1=N2Þ
�
Θflux: ð13Þ

We see that as the number p of quasiholes increases,
the Hall conductance starts to decrease from its precise
quantized value 1=β. This is consistent with the fact that
increasing p corresponds to increasing the flux of the
magnetic field. Equation (13) generalizes the FQHE result,
see, e.g., Ref. [17] [Eq. (4.72)] for the g ¼ 1 case.
Discussion.—The Hall conductance is the trace of the

curvature of the adiabatic Berry connection M ¼ PicNϕðΣÞ
and our computation only determines the cohomology class
represented by this two-form, but not form itself. The L2

adiabatic connection requires a computation of N-fold
L2-normalization integrals, see, e.g., Ref. [18]. In the
IQHE [8,19] the adiabatic curvature is indeed exponentially
close to the one in Eq. (12) for large N. We expect the same
effect to hold for β > 1, see, e.g., Refs. [18,20,21] for the
case of the torus, although this point definitely deserves
further investigation.
We have seen that the bundles of quantum states passing

the projective flatness test do turn out to be sufficiently
robust and thus warrant the label of topological states of
matter. It would be interesting to apply our test to other
FQHE states [22–26] and other parameter spaces [27–34],

such as the moduli spaces of complex structures on Σ,
where projective flatness has been conjectured to hold
for some of the states in FQHE [35]. In the case of the
parameter spaces being the space of positions of the
quasiholes, our test can be applied to the question of
topological braiding [36–38]. Another interesting applica-
tion of the higher Chern classes is that they can potentially
be used as novel indices to distinguish between phases of
quantum matter [39]. We further note that the importance
of the projective flatness of the quantum bundles for the
consistency of the general quantization procedure was
emphasized in Ref. [40], where its relevance for conformal
field theories has also been discussed.
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