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We derive a theory that describes homogeneous nucleation of grain boundary (GB) phases. Our analysis
takes account of the energy resulting from the GB phase junction, the line defect separating two different
GB structures, which is necessarily a dislocation as well as an elastic line force due to the jump in GB
stresses. The theory provides analytic forms for the elastic interactions and the core energy of the GB phase
junction that, along with the change in GB energy, determines the nucleation barrier. We apply the resulting
nucleation model to simulations of GB phase transformations in tungsten. Our theory explains why under
certain conditions GBs cannot spontaneously change their structure even to a lower energy state.

DOI: 10.1103/PhysRevLett.128.035701

The nucleation of a different phase of matter from a
parent phase is one of the most basic phenomena studied
within the physical sciences, and has tremendous impact on
a range of technologies from the efficiency of steam
engines [1] to engineering alloys [2]. Similarly to bulk
materials, interfaces can also exhibit phaselike behavior
[3–5]. For interfacial phases in fluid systems, the conditions
of equilibrium and stability were first derived by Gibbs [6].
In solid systems, phase transformations within grain
boundaries (GBs), interfaces formed by two misoriented
crystals of the same material, have recently become a topic
of increased interest due to the accumulating experimental
and modeling evidence of first-order transitions at such
interfaces [7–19]. GB phase transitions are important
because they result in discontinuous changes in GB
properties such as mobility, diffusivity, and cohesive
strength [12,20–25]. These changes in turn can have a
tremendous impact on macroscopic properties of materials
such as creep and ductility by affecting a material’s
microstructure [26–32].
While GB phase transformations have been seen in many

different materials [5], the thermodynamics and kinetics of
these transformations is not understood. In principle, a GB
with multiple possible structures of nearly the same energy
should be able to sample its different states at finite
temperature, making the GB structure an ensemble of
different configurations [23,33]. However, in experimental
and modeling studies GBs behave more like conventional
3D phases: only one GB phase is observed at a time
or, when a transformation occurs, the two GB phases
are separated by a sharp 1D interface [7,16,19,34,35].
Moreover, GB phase transitions can be sluggish or delayed
even when they are not limited by solute diffusion
[19,36,37]. Time-temperature-transformation GB diagrams
describing these kinetics have been proposed as a new
strategy for GB engineering and optimization of materials
properties [36,37].

No nucleation theory currently exists explaining GB
phase transformation behavior. A major gap is the poor
understanding of the role of GB phase junctions (GBPJs),
the 1D interfaces separating two different phases within a
GB [38–42]. In this Letter, we use the classical nucleation
theory approach to describe GB phase transformations. The
resulting theory recognizes that GBPJs are dislocations as
well as elastic line forces and for the first time quantifies the
contribution of their elastic interactions and core energy to
the nucleation barrier.
Consider nucleation of a new GB phase α from a parent

GB phase β, as shown in Fig. 1(a). We assume that the
nucleus is circular. Figure 1(b) shows the side view of the
system in 1(a) which also includes the two misoriented
crystals. GBPJs are dislocations as well as line forces,
arising from the imbalance of the GB stresses τβ and τα:
f ¼ ðτα − τβÞ · r̂, where r̂ is the radial unit vector. The
GBPJ indicated on the figure as a contour C forms a closed
circular loop, which is a dislocation loop of Burgers vector
b with 3 components [38]. The energy of the nucleus is
given by

E3DðRÞ¼πR2Δγαβþ2πRΓ̄αβþEddðRÞþEdpðRÞþEppðRÞ:
ð1Þ

Here, the first two terms are the usual classical nucleation
theory contributions describing the driving force for the
transformation due to the reduction in the GB free energy
per unit area Δγαβ ¼ γα − γβ and the increase due to the
perimeter energy Γ̄αβ, the effective orientation-averaged
core energy per unit length of the GBPJ. The last three
terms on the right hand side of Eq. (1) describe the elastic
part of the GBPJ energy. EddðlÞ is the elastic self-energy
of the dislocation loop, EppðlÞ is the elastic energy of the
line force loop, and EdpðlÞ is the interaction between the
dislocation and line force loop. A detailed derivation is
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given in Supplemental Material [43]. Each elastic term is
given as

EddðRÞ ¼ μR
4ð1 − νÞ

�
½2b23 þ ðbpÞ2ð2 − νÞ� ln

�
4R
ρ

�

− 2½b23 þ ðbpÞ2ð2 − νÞ�
�
; ð2aÞ

EdpðRÞ ¼ −
ðf1 þ f2Þb3R

2ð1 − νÞ ½ð1 − 2νÞ lnð4R=ρÞ − 3þ 4ν�;

ð2bÞ

EppðRÞ ¼ −
R

32μð1 − νÞ f½f
2ð13 − 16νÞ − 2f1f2� lnð4R=ρÞ

− 4f2ð7 − 8νÞg: ð2cÞ

ðbpÞ2 ¼ b21 þ b22. ρ is the core radius of the dislocation, and
is b. b3 is the ê3 component of the Burgers vector; and
f2 ¼ f21 þ f22, f1 ¼ ðτα11 − τβ11Þ, and f2 ¼ ðτα22 − τβ22Þ.
Equations (1) and (2) describe the energetics of GB

phase nucleation by predicting the energy of the nucleus as

a function of its size. Equation (1) can be used to predict the
size of the critical nucleus. In the 3D system considered
here, the parameter of the GBPJ changes with the radius of
the nucleus; as a result, the core energy Γ̄αβ cannot be
calculated directly from MD using this 3D model, unless it
is treated as a fitting perimeter. Before we proceed to the
MD part of this study, we show that Γ̄αβ can be calculated
directly from molecular statics simulations of quasi-2D
nucleation.
Consider a GB phase transformation in a quasi-2D

system such as a thin film, schematically shown in
Fig. 1(b). Here, the length of each GBPJ is fixed and set
by the film thickness L. In this 2D case the energy of the
system per unit thickness as a function of nucleus width l is
given by

E
L

2D ¼ Δγαβlþ E
L

ddðlÞ þ E
L

ppðlÞ þ E
L

dpðlÞ þ 2Γαβ: ð3Þ

This is the 2D analog of Eq. (1). In Eq. (3) the core
energy Γαβ is decoupled from the elastic energy terms.
Since E2D and Δγαβ can be calculated directly from
molecular statics calculations and the elastic energy terms
can be evaluated using the elasticity theory, Eq. (3) and
quasi-2D MD simulations of nucleation can be used to
calculate Γαβ. The three elastic energy terms are derived in
Supplemental Material [43]. The resulting equation for the
nucleation energy is

E
L

2D ¼ Δγαβlþ 1

8πð1− νÞ
�
4μ½ð1− νÞb22 þ ðbeÞ2�

−
f21ð3− 4νÞ

μ
− 4f1b3ð1− 2νÞ

�
ln

�
l
ρ

�
þ 2Γαβ þC;

ð4Þ

with C being the elastic terms not dependent on l.
Equation (4) predicts that when the elastic interactions

are included, the quasi-2D nucleation energy is no longer a
decreasing function of l for a negative Δγαβ, but it increases
first for small nuclei resulting in a nucleation barrier.
This nucleation barrier allows GBs to remain in a meta-
stable state even in quasi-2D systems like thin films. The
critical length of the α nucleus is determined by solving
dE2DðlÞ=dl ¼ 0 for l, which gives an analytical solution

lc ¼ 4½ð1− νÞb22þðbeÞ2�μ2− 4μf1b3ð1− 2νÞ−f21ð3− 4νÞ
8πμΔγαβðν− 1Þ :

ð5Þ

The analysis presented so far shows that in both 3D and
quasi-2D cases, the elastic interaction energy due to GBPJs
can increase the GB transformation barrier. To test the
predictions of our theory we performed MD simulations
of GB phase transformations. We have selected the

FIG. 1. Panel (a) depicts a top view of the GB plane showing a
circular nucleus of GB phase α inside the parent GB phase β. The
contour C represents the GB phase junction. Panel (b) shows a
side view of a slice through the nucleus of GB phase β, with ê2
going into the page, showing the misoriented bulk crystals and
GB phases. Two GB phase junctions are indicated by dislocation
symbols. The imbalance of GB stresses τβ and τα at GB phase
junctions also produces line forces.
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Σ29ð520Þ½001� symmetric tilt GB in tungsten (W) modeled
with the embedded atom model potential developed by
Zhou et al. [47]. W was chosen because it is elastically
isotropic, so its elastic energy should be described well
by the developed theory. The shear modulus and Poisson
ratio for this potential are μ ¼ 160.0 GPa and ν ¼ 0.280.
Previously, grand-canonical GB structure searches demon-
strated multiple GB phases in several different W GBs
[48,49]. This GB can be considered to be a reasonably
general GB in terms of its excess properties, and the
magnitude of the Burgers vector of the GBPJ. We selected
this particular boundary because the GB structure search
identified two distinct GB structures that correspond to
different grain translations, but contain the same number of
atoms [50–52]. The latter property is convenient for our
analysis because it allows us to create nuclei of a new GB
phase at 0 K to calculate their energy and study GB phase
transformations on the short MD timescale.
The α phase is the ground state with the 0 K energy

γα ¼ 2.342 J=m2 and the β phase is metastable with energy
γβ ¼ 2.418 J=m2. All relevant GB properties are listed in
Table I. To study the finite-temperature stability of both GB
structures we performed MD simulations of each boundary
using the NVT ensemble at temperatures of 1500, 2000,
and 2500 K. Initially we used relatively large GB areas with
dimensions of 30

ffiffiffiffiffi
29

p
a0 × 10a0. The structures of the two

GB phases are shown in Fig. 2. In these simulations both
GB structures remained stable and did not transform even
after 120 ns of simulation at the highest temperature of
2500 K. This already suggests that the transformation
barriers are significant.

To observe the GB phase transformations in MD we
reduced the ê2 dimension of the simulation block to the
smallest possible value equal to just one lattice parameter
making it quasi-2D. In this case the nucleation barrier is
reduced significantly and after only 8 ns of MD simulation
at 1500 K the α phase nucleated from the β phase. The same
behavior was observed at higher temperatures, confirming
that the β phase is metastable within the entire temperature
range. These simulations clearly demonstrate that the GB
structure observed in MD and GB phase transformation
behavior is very sensitive to the choice of GB area, because
for small dimensions periodic boundary conditions artifi-
cially influence the nucleation barrier. We used the obtained
simulation block containing both phases to calculate the
Burgers vector of the GBPJ following the methodology
described in Ref. [38]. The Burgers vector was found
to be b ¼ 0.600 Åê1 þ 0.423 Åê3, which has the same
order of magnitude as a disconnection for this GB: bDSC ¼
−0.416 Åê1 − 0.416 Åê3 [53,54]. bDSC is defined by the
Displacement Shift Complete (DSC) lattice associated with
the grain boundary [43]. The tangential component of b is
due to the different grain translations (or excess GB shears
[55]) of the two GB phases and the normal component
is equal to the difference in GB excess volumes [38–40].
The details of the Burger circuit analysis are included in
Supplemental Material [43].
To explain the surprising stability of the metastable GB

phase β observed in the full 3D MD simulations, we could
use our theory and predict the nucleation barriers. This
would require calculations of finite-temperature elastic
constants and free energies of all the defects involved
including the free energy of GB junction cores. Some of
those calculations are nontrivial and are beyond the scope
of this study. However, we can still get valuable insights
into the energetics of the GB phase transformation and
validate our nucleation model by performing molecular
statics calculations at 0 K. Knowing the Burgers vector of
the GBPJ from the MD analysis, GB energies, GB stresses
and the material’s elastic constants allows us to predict the
nucleus energy as a function of its size. The last missing
ingredient of the nucleation theory is the core energy of
the GB phase junction Γαβ. To obtain Γαβ we start our
molecular statics analysis from the quasi-2D geometry.
The simulation block with the GB had dimensions
120

ffiffiffiffiffi
29

p
a0 × a0 × 10

ffiffiffiffiffi
29

p
a0. With the small dimension

FIG. 2. Panel (a) shows the α phase (ground state) and panel
(b) shows the β phase (metastable).

TABLE I. The relevant GB properties for the two W GB
phases. The other properties are μ ¼ 160.0 GPa, ν ¼ 0.280, and
Γαβ ¼ 1.06 eV=Å.

GB γ (J=m2) τ11 (J=m2) τ22 (J=m2)

α 2.342 3.926 3.609
β 2.418 0.138 5.775
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along the GB tilt axis as before. By applying the appropriate
initial translations to the upper and lower grains followed by
an energy minimization we prepared bicrystals with the
parent phase β containing a nucleus of phase α of different
sizes. The method for constructing the GB nucleus of size l
is described in Supplemental Material [43]. The nucleation
energy is then calculated as the difference between total
energies of the system with and without the nucleus.
Figure 3(a) shows an excellent agreement between the

nucleation energy calculated directly from molecular statics
(blue points) and the predictions of the nucleation model
(solid line) developed in this work. The critical nucleus for
Σ29ð520Þ½001� from the molecular statics simulations was
found to be lMD ¼ 17.0 Å. lc ¼ 21.6 Å is predicted from
Eq. (5). More importantly, Eq. (4) and the MD data predict
Γαβ
min ¼ 0.383 eV=Å for this geometry when the GBPJ is

parallel to the tilt axis. Similar to regular dislocations, the core
energy Γαβ may strongly depend on the line direction. By
performing several quasi-2D calculations changing the GBPJ
direction, we found that Γαβ

min ¼ 0.383 eV=Å and Γαβ
max ¼

1.73 eV=Å, where Γαβ
min corresponds to ξ ¼ ½001� and Γαβ

max

corresponds to ξ ¼ ½2̄50�. To the best of our knowledge, these
are the first reported values of GBPJ core energy, and its
directional anisotropy. In Supplemental Material it is shown
that the effective GBPJ core energy can be approximated as
Γαβ¼ 1

2
ðΓαβ

maxþΓαβ
minÞ¼1.06 eV=Å [43].

We tested the accuracy of the 3D model by comparing its
predictions to molecular statics simulation results of circular
nuclei. Here, the GB had a roughly square shape with the
block dimensions. The system contained 8.7 × 106 atoms.
As shown in Fig. 3(b), the nucleation energy predicted by
Eq. (1) compares extremely well with the simulation results.
For instance, the critical radius of the nucleus is predicted to
be Rc ¼ 299 Å, from the MD data the critical nucleus is
found to have a radius of approximately 375 Å. The large
nucleation barrier and critical nucleus size are consistent
with the observation that GB transformation did not occur in
our fully 3D simulations even at higher temperatures.
The critical nucleus sizes of the quasi-2D and fully 3D

cases are vastly different with lc ¼ 21.6 Å (2D) compared
to the critical diameterDc ¼ 598 Å (3D). This difference is
not surprising because the contributions to the nucleation
barrier scale differently with the nucleus size for these two
geometries. However, this stark difference in critical radius
points to the importance of simulating fully three dimen-
sional systems for GB phase nucleation.
To further show that predictions of our nucleation model

are not merely applicable to 0 K, we also performed high-
temperature MD simulations. Specifically, using the quasi-
2D geometry we prepared a dual phase system with a
nucleus of the lowest free energy phase α embedded inside
the metastable phase β. In one system the length of the α
phase was less than the critical nucleation length and in the
other it was greater than the critical length estimated at 0 K;
cf. Figs. 4(a) and 4(c), respectively. We then allowed the
systems to evolve at 1500 K. As shown from Fig. 4(b), the
α nucleus of subcritical length shrinks and ultimately

FIG. 3. Energy of the GB phase α nucleus created inside
metastable GB phase β as a function of its size for (a) quasi-2D
and (b) fully 3D geometries at 0 K.

FIG. 4. The evolution of a dual-phase GB system in MD
simulation at T ¼ 1500 K in a quasi-2D geometry. Panels (a) and
(b) depict the shrinkage and ultimate annihilation of a subcritical
length nucleus. Panels (c) and (d) depict the growth of a
supercritical length nucleus.
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disappears from the simulation over the course of 40 ns.
On the other hand, the nucleus of supercritical size grew,
transforming the metastable boundary into its ground state
α, as shown in Fig. 4(d). These simulations confirm the
presence of a nucleation barrier due to elastic interactions
and show that the GB phase β can remain metastable even
in a quasi-2D geometry.
We have derived a theory that describes homogeneous

nucleation of GB phases. The theory quantifies the con-
tributions from the elastic interactions and the core energy
of the GB phase junction to the nucleation barrier. The
predictions of the theory are in excellent agreement with the
direct MD calculations. By recognizing and quantifying the
elastic energy of GB phase junctions, our study creates a
foundation upon which heterogeneous nucleation models
can be developed to treat nucleation on GB disconnections,
triple junctions, and other defects.
Our finite-temperature MD simulations have shown that

both GB phases studied remain stable and do not transform
even at elevated temperatures, which is consistent with the
large transformation barriers calculated at 0 K. Our theory
explains why away from critical points GBs cannot
spontaneously change their structure even to a lower energy
state. By quantifying the nucleation barrier one can in
principle use the model to predict limits of metastability of
different GB structures. While the analysis developed here
has been applied to one particular boundary in tungsten,
previous studies of GB phase transformations reported
long nucleation times, sharp GB phase junctions, and well
defined nuclei [7,16,19,34,35,48,49], which suggests that
the conclusions of this study are general.
Beyond first-order GB transformations discussed in this

work, the analysis helps us better understand finite-
temperature behavior of GBs in general. Prior studies sug-
gested that at finite-temperature GBs sample higher energy
states with Boltzmann probability, so that the GB structure is
not unique but rather is represented by a properly weighted
ensemble of different structures [23,33]. Our study shows that
the energy difference in the Boltzmann factor should also
include the energy of the GB phase junction, in addition to the
energy difference per unit area. At lower temperatures this
positive energy can suppress phase fluctuations, resulting in
the unique GB structure often observed in experiments.
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