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We present a theorem on the compatibility upon deployment of kirigami tessellations restricted on a
spherical surface with patterned slits forming freeform quadrilateral meshes. We show that the spherical
kirigami tessellations have either one or two compatible states, i.e., there are at most two isolated strain-free
configurations along the deployment path. The theorem further reveals that the rigid-to-floppy transition
from spherical to planar kirigami tessellations is possible if and only if the slits form parallelogram voids
along with vanishing Gaussian curvature, which is also confirmed by an energy analysis and simulations.
On the application side, we show a design of bistable spherical domelike structure based on the theorem.
Our study provides new insights into the rational design of morphable structures based on Euclidean and
non-Euclidean geometries.
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Introduction.—Prescribed cuts on kirigami structures
can induce desired deformations across various scales
[1–8]. This concept has been used to design metamaterials
[9–13], morphable structures [14–19], nanocomposites
[20], soft robotics [21], and mechanical actuators [22].
In these applications, deployability and multistability play
significant roles in determining the energy landscapes and
morphing routes of the deploying process. The deformation
of deployable (rigidly deployable, to be exact) kirigami
structures can be idealized as continuous rotations of rigid
panels connected by flexible hinges at the corner [18].
Thus, from the viewpoint of geometry, rigid deployability
means having a series of piecewise isometric transforma-
tions between the undeployed configuration and any
deployed configurations along the path of deployment.
By contrast, multistability emerges if piecewise isometric
transformations only exist at a finite number of states on the
deployment path [9,17], which is physically equivalent to
discontinuous connections between stress-free configura-
tions [23]. Existence of such isometric transformations is
also referred to as “compatibility,” a term originally
proposed to design rigidly deployable origami tessellations
[24–26].
In order to achieve desired energy landscapes with

deployability or multistability upon deployment of kirigami
structures, pioneering studies on geometrical and topologi-
cal design principles have been carried out [17,18,27–33].
However, most existing works focus on classical patterns
with planar symmetry [34], e.g., the well-known rotating
squares [35] and kagome patterns [36], while freeform slit
distributions can greatly expand the configuration space of
kirigami structures [17,18,33]. Besides, nearly all the

current works on morphable kirigami consider cutting flat
sheets to engineer the deployed shapes in two or three
dimensions, while very few are focused on cutting curved
surfaces of non-Euclidean geometry. As an example of
kirigami on curved developable surfaces, cylindrical shells
with prescribed slits have been found to have unusual
energy barriers with pop-up deformations compared to flat
sheets [7]. Generically, kirigami perforated on nondeve-
lopable surfaces (e.g., spherical surfaces) can benefit the
design of shape-adaptive devices such as wearable sensors
[37] and curvy imagers [38,39]. But relevant research is
still absent. Therefore, it is of great significance to develop
general theories on the deployments and energy landscapes
of kirigami structures covering freeform cutting patterns
and Euclidean and non-Euclidean design spaces.
In this Letter, we focus on spherical quadrilateral

kirigami (SQK) tessellations—the geodesic cuts divide
curved sheets into M columns and N rows of arrayed
quadrilateral panels [Fig. 1 (see the Supplemental Material,
Sec. IX [40], for fabrication details)] that are (ideally)
connected by free rotational hinges at the corner [41]—and
prove the following compatibility theorem.
Theorem 1.—An SQK tessellation has either one or two

compatible configurations.
First, we demonstrate the validity of this theorem for

basic 3 × 3 SQK tessellations [Fig. 2(a)] by investigating
the corresponding “compatibility condition” [43]. Each
solution of the compatibility condition stands for a unique
“compatible configuration.”We will verify that the number
of such solutions is either 1 or 2, depending on the
geometry of the given kirigami pattern. Then, the proof
is accomplished by the fact that the compatibility of an
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M × N tessellation requires any of its 3 × 3 parts to be
compatible. Further, we give a corollary for implementing a
spherical tessellation that guarantees two compatible con-
figurations, and another one for a floppy planar tessellation
with infinite compatible states. Finally, we design a
reconfigurable kirigami structure with a domelike deployed
compatible configuration.
Compatibility theorem.—We start by investigating 3 × 3

SQK tessellations built on a sphere with Gaussian curvature
K. Based on spherical trigonometry [44], we restrict the
slits to be minor arcs of great circles, and employ notations
in Fig. 2(a) to formulate the compatibility condition. One
can observe that, first, there are four connected quadrilat-
eral slits Ci surrounding the inner panel, with side lengths
ai, bi, ci, di ∈ ð0; π= ffiffiffiffi

K
p Þ, and opening angles αi, βi, γi,

δi ∈ ð0; πÞ for i ¼ 1, 2, 3, 4. Second, since the slits are
geodesic lines at the undeployed state, the side lengths
satisfy ai þ bi ¼ ci þ di. Given the side lengths of a slit Ci,
the opening angles βi, γi, and δi are uniquely determined as
functions of αi (see the Supplemental Material, Sec. II
[40]). As a result, the shape of a slit relies on its neighbor by
the conserved relations αi ¼ π − βiþ1, for i ¼ 1, 2, 3, 4 (β5
is defined as β1, and the same cyclic relationship follows
below for other quantities). That is, the opening angles in
adjacent slits (say, βi and βiþ1) are in a one-to-one corres-
pondence, which we denote by cos βi ¼ giðcos βiþ1Þ. The
explicit expressions of gi are provided in the Supplemental
Material, Sec. II [40]. Then we define the loop function
g≜g1∘g2∘g3∘g4 for ðgi∘giþ1Þð·Þ ¼ gi½giþ1ð·Þ�. From the ex-
pressions of gi, we observe that g is smooth on the feasible
domain cos β1 ∈ ½−1; cr� for cr ∈ ð−1; 1�. The upper bound
cr represents the stage where at least one of opening angles
αi and γi reaches π upon deployment, and the lower bound
−1 corresponds to the undeployed state. Avalid compatible
configuration requires that the value of cos β1 is preserved
around a loop of operations by gi, so that the compatibility
condition reads

gðcos β1Þ − cos β1 ¼ 0: ð1Þ

Each root of Eq. (1) represents one compatible state of a
3 × 3 SQK tessellation. A trivial solution is cos βi ¼ −1 at
the undeployed state. To explore other compatible con-
figurations, we will next show that g is a strict convex
function on ½−1; cr�. The first derivative of g with respect to
cos β1 is given by g0ðcos β1Þ ¼

Q
4
i¼1 g

0
iðcos βiþ1Þ, in which

g0i can be explicitly expressed as (see the Supplemental
Material, Sec. II [40])

g0iðcos βiþ1Þ ¼
sinðdi

ffiffiffiffi
K

p Þ sin βi sin δi
sinðbi

ffiffiffiffi
K

p Þ sin αi sin γi
; ð2Þ

where we have αi ¼ π − βiþ1, and βi, γi, δi are functions of
αi under given side lengths ai, bi, ci, and di. Checking the
right-hand side of Eq. (2), we find g0i > 0 on ð−1; crÞ. Also,
we can prove g00i > 0 under the condition ai þ bi ¼ ci þ di
(see the Supplemental Material, Sec. III [40]). It then
follows that g00 > 0 on ð−1; crÞ. Adding the smoothness of
g, we conclude that g is a strict convex function on ½−1; cr�.
As a result, Eq. (1) has at most two roots, and equivalently,
a 3 × 3 SQK tessellation has at most two compatible
configurations. It further follows that anM × N tessellation
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FIG. 2. (a) The geometric notations of a deployed 3 × 3 SQK
tessellation. (b) A 3 × 3 SQK tessellation at cos β1 ¼ −1 (left), 0
(middle), and 1 (right). We replace the hinge at the top-central
vertex with a spring and permit the overlap of the rigid panels,
such that the incompatible configuration (middle) is deter-
mined by minimizing the spring elongation. (c) The optimized
3 × 3 SQK tessellation at cos β1 ¼ −1 (left), −0.5 (middle), and
0 (right). The compatible configuration is shifted from cos β1 ¼ 1
to 0. (d) Curves of the loop functions.
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FIG. 1. 5 × 5 SQK tessellation. (a) The kirigami pattern.
(b) The compatible configuration at ω ¼ π=2. (c),(d) The
physical model made of rubber.
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has at most two compatible states as well, because the
number of its compatible configurations cannot exceed that
of any of its 3 × 3 parts. Therefore, Theorem 1 is proved.
Examples and verification.—Theorem 1 asserts that an

SQK tessellation can only have up to one compatible
configuration away from its undeployed state. Here we
demonstrate a special class of SQK tessellations that are
assured to have the deployed compatible configuration.
Assuming ai ¼ ci and bi ¼ di for i ¼ 1, 2, 3, 4, the explicit
expressions of the loop function—denoted by ge in this
case—can be derived as (see the Supplemental Material,
Sec. III [40])

geðxÞ ¼ ðPþQÞxþ ðP −QÞ
ðPþQÞ þ ðP −QÞx ; ð3Þ

in which P;Q ¼ Q
4
i¼1 cos

2½ðai � biÞ
ffiffiffiffi
K

p
=2�. Then, we

solve Eq. (1) and obtain cos β1 ¼ �1, indicating two
compact compatible configurations [as shown in Fig. 2(b)].
Conversely, if a 3 × 3 SQK tessellation is compatible at
two compact states, we can conclude ai ¼ ci and bi ¼ di,
following the two conditions ai þ di ¼ bi þ ci at cos βi ¼
1 and ai þ bi ¼ ci þ di at cos βi ¼ −1. In general, for an
M × N SQK tessellation, we can investigate all of its 3 × 3
parts and obtain the following corollary.
Corollary 1.—An SQK tessellation is compatible at two

compact configurations if and only if the opposite side
lengths are equal for each slit.
This corollary is instructive to design SQK patterns with

specified compatible states. For a 3 × 3 SQK tessellation,
we define kbi and kdi as the ratios by which the slit Ci is
divided by the intersecting slits Ci−1 and Ciþ1, i.e., kbi ¼
bi=ðai þ biÞ and kdi ¼ di=ðci þ diÞ. Fixing the boundary
vertices, the undeployed kirigami is uniquely determined
by kbi and kdi via solving a nonlinear equation system, and
the deployed state is then given by applying the deforma-
tion induced from the reference opening angle β1. If we
assign the cutting ratios with kbi ¼ kdi , the tessellation will
be compatible at two compact configurations. We can
further optimize kbi and kdi to shift the second compatible
configuration from cos β⋆1 ¼ 1 to cos β⋆1 ∈ ð−1; 1Þ. These
formulations are provided in the Supplemental Material,
Sec. IV [40].
A 3 × 3 SQK tessellation with kbi ¼ kdi ¼ 0.4 is illus-

trated in Fig. 2(b). The slits are prescribed on a spherical
square of side length π=3 and Gaussian curvature K ¼ 1.
This tessellation has two compact states at cos β⋆1 ¼ �1

[Fig. 2(b), left and right], and is incompatible at cos β1 ∈
ð−1; 1Þ [Fig. 2(b), middle]. An optimized tessellation
compatible at cos β⋆1 ¼ 0 is illustrated in Fig. 2(c). One
can observe that the kirigami pattern only changes slightly
after optimization [i.e., kbi ≈ kdi ≈ 0.4, as shown in Fig. 2(c),
left], while the compatible state is converted from cos β⋆1 ¼
1 to 0 [Fig. 2(c), right]. This high sensitivity to the small

changes of the reference pattern arises from the high
nonlinearity of the loop function g with respect to ai, bi,
ci, and di. The plots of loop functions for these two
tessellations are shown in Fig. 2(d). We can see that both
curves are convex and intersect with the 45° rising line
twice, indicating that there exist two compatible configu-
rations. For comparison, the 3 × 3 SQK tessellations with a
single compatible state are shown in Fig. S3.
Rigid-to-floppy transition.—If the Gaussian curvature K

is sufficiently small, we can expect that the SQK tessella-
tions are approximately located on a plane, degenerating
into planar quadrilateral kirigami (PQK) tessellations.
When K ¼ 0, Eq. (3) becomes geðxÞ ¼ x, so that the
compatibility condition always holds for 3 × 3 PQK
tessellations with ai ¼ ci and bi ¼ di (i.e., the slits form
parallelograms). Otherwise, if ai ≠ ci or bi ≠ di, we can
verify that the degenerate g0i and g00i are always positive
(see the Supplemental Material, Sec. V. [40]). Hence,
Theorem 1 still holds under this circumstance. Generally,
we can investigate all the 3 × 3 parts of M × N PQK
tessellations and obtain the following corollary.
Corollary 2.—A PQK tessellation is rigidly deployable

between two compact configurations if and only if all the
slits form parallelograms. Otherwise, a PQK tessellation
has either one or two compatible configurations.
In the inspiring work [18], Choi et al. proved that a

planar kirigami tessellation with kite-shape slits is rigidly
deployable if and only if all the slits are rhombuses.
Corollary 2 further extends the design space of quadrilat-
eral kirigami, as a floppy mechanism, to a much broader
domain, i.e., from rhombus to parallelogram slits.
Corollaries 1 and 2 are obtained from the geometric

compatibility. Actually, they reflect the physical insights on
the rigid-to-floppy transition from curved to flat kirigami.
We now examine the connection between Gaussian curva-
ture and the rigidity of SQK tessellations. To this end, we
develop a “single-spring model”—the kirigami is repre-
sented by a system of hinge-connected rigid panels, except
that one hinge is replaced by a linear spring with stiffness
kS, as illustrated in Fig. 2(b). In this way, the compatible
configuration corresponds to a zero elongation of the
spring, whereas an incompatible configuration corresponds
to a nonzero elongation. Then, the incompatibility or
rigidity of the system can be characterized by the elastic
energy ES ¼ ðkS=2ÞΔ2

S, where ΔS is the elongation of the
spring. We use Taylor’s series to expand the scaled energy
ES=ðkSb21Þ at K ¼ 0 (see the Supplemental Material,
Sec. VI.A [40]):

ES

kSb21
¼ 1

8

�X4
i¼1

ðaibiÞ
�2
K2sin4β1 þO½L6K3�; ð4Þ

where L ¼ maxfa1; b1;…; a4; b4g, and L2K ≪ 1. The
leading term in Eq. (4) reflects the competing roles
of the spherical surface area (∼1=K) and the slit size
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(∼
P

4
i¼1 aibi ∼ L2). It clearly and explicitly shows that,

when K ¼ 0, the energy is zero for any value of β1, which
means that there is an entire path of zero-energy deploy-
ments on a plane; however, when K ≠ 0, there are only two
isolated zero-energy states: β1 ¼ π (undeployed) and β1 ¼ 0
(deployed and compact). Moreover, Eq. (4) can also be
related to the loop function ge as follows (see the
Supplemental Material, Sec. VI.A [40]):

ES

kSb21
¼ 1

2
½geðcos β1Þ − cos β1�2 þO½L6K3�; ð5Þ

which indicates that the degree of incompatibility
jgeðcos β1Þ − cos β1j characterizes the magnitude of the
elastic energy. Since geðcos β1Þ − cos β1 ¼ 0 only has two
roots [Fig. 2(d)], Eq. (5) also reveals two zero-energy
configurations. Note that the apparent rigidity of the two-
configuration result will vanish if we introduce additional
freedom to move in the radial direction (see the
Supplemental Material, Sec. VIII. [40]), indicating the
potential expansion of the design landscape.
The evolution of the energy upon deployment can be

simulated by a “multispring model” in which the kirigami
is represented by hinge-connected springs along the edges
and diagonals of panels. In this model, the elastic energy of
the deployed tessellations can be written as EðYÞ ¼P

n kn½lnðYÞ − l0n�2=2, where Y is the array of panel-vertex
positions, ln the spring length numbered by the index n, l0n
the rest length at the undeformed state, and kn the spring
stiffness (set to be 1=l0n). The deployed configurations are
determined by incrementally increasing the kinematic
parameter cosω—defined by cos β1 of the lower-left
3 × 3 tessellation [Fig. 1(b)]—from the undeployed state.
At each step, we minimize the energy EðYÞ taking
positions of all the vertices as variables, which are con-
strained to form a SQK pattern, and enforce the opening
angle ω (see the Supplemental Material, Sec. VI.B [40]).
Figure 3(a) demonstrates the energy curves of SQK shells
perforated on a spherical square of fixed side length

s ¼ π=3 for different Gaussian curvatures. While decreas-
ing K from 1 to 0.4 [Fig. 3(b)], the energy barrier drops
significantly. If K ¼ 0, the SQK tessellation degenerates to
a PQK tessellation, which is rigidly deployable (floppy)
with zero energy of deformations. We illustrate the
deployed configurations of these kirigami tessellations in
Fig. S6. We additionally show the energy curves with
deployed compatible states at cosω ∈ ð−1; 1Þ in Fig. S7.
Shape-morphing structures.—As a final demonstration

for potential applications of our theorem, we address how
to design the cutting patterns to achieve compatible
deployed configurations with desired shapes. We start
from a 6 × 6 square SQK shell structure of side length s ¼
0.465π and Gaussian curvature K ¼ 1, and then optimize
the locations of vertices via minimizing the distance
between the deployed outer vertices and the boundary of
a spherical dome of radius r ¼ 1 and height h ¼ 1.2.
Details of the optimization framework are given in the
Supplemental Material, Sec. VII [40]. Figure 4 demon-
strates the shell structure (see the Supplemental Material,
Sec. IX [40], for fabrication details). The covering area
of the undeployed pattern and the deployed dome can
be calculated by tanðSsqua:=4Þ ¼ sin2ðs=2Þ ffiffiffiffiffiffiffiffiffi

sec s
p

and
Sdome ¼ 2πrh, respectively. Thus, the expansion ratio of
the area is Sdome=Ssqua: ≈ 2.0. According to Theorem 1, the
deployed configuration is at an isolated compatible state,
which is ideally rigid, so that it can form a stable structure
for potential applications such as tents and roofs (see Movie
1 in the Supplemental Material [40]). Moreover, shape-
morphing mechanisms can be realized by PQK tessella-
tions with different topologies [45].
Conclusion and discussion.—In summary, we show that

spherical quadrilateral kirigami tessellations can only be
compatible at isolated configurations, whereas planar
kirigami quadrilateral tessellations with parallelogram slits
have infinite and continuous compatible states. We develop
single-spring and multispring models to explicitly analyze
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FIG. 3. (a) The evolutions of elastic energy E of 5 × 5 SQK
and PQK shells with equal opposite side lengths of slits for
different values of Gaussian curvature K ¼ 1, 0.7, 0.4, and 0. The
energy curve of a PQK tessellation (K ¼ 0) is constantly zero.
(b) Undeployed patterns of the tessellations. The aspect ratios of
slits are fixed as 0.4.

(c) (d)

(a) (b)

5 cm5 cm

FIG. 4. Reconfigurable SQK domelike shell structure. (a) The
kirigami pattern is perforated on a spherical square of side length
s ¼ 0.465π and Gaussian curvature K ¼ 1. (b) The deployed
configuration covers a spherical dome of height h ¼ 1.2. (c),(d)
The physical model made of resin.
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and simulate the evolution of energy along the deployment
paths for different values of Gaussian curvature, which
characterizes the rigid-to-floppy transition. Since the defor-
mation energy drops appreciably near the flat surface, the
slightly curved kirigami shells are expected to be a
promising candidate of pseudomechanisms, as those pre-
sented in Refs. [42,46].
The compatibility theorem and its corollaries reveal the

role of curvature in determining the deployment behaviors
of kirigami systems. The effect of curvature on constrained
morphology of stable structures can also be observed in
various physical phenomena in nature such as the growth of
nanoshells [47] and rigid colloidal crystals [48] on spheri-
cal substrates. More curvature-induced scenarios, such as
the buckling of non-Euclidean kirigami shells—the
counterpart of buckling-induced planar kirigami [10]—
can be further investigated. Finally, the compatibility in our
theorem relies purely on the size-independent geometry of
the prescribed slits, so that the applicability is rooted in
diverse materials and various scales.
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