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We demonstrate how the presence of continuous weak symmetry can be used to analytically diagonalize
the Liouvillian of a class of Markovian dissipative systems with strong interactions or nonlinearity. This
enables an exact description of the full dynamics and dissipative spectrum. Our method can be viewed as
implementing an exact, sector-dependent mean-field decoupling, or alternatively, as a kind of quantum-to-
classical mapping. We focus on two canonical examples: a nonlinear bosonic mode subject to incoherent
loss and pumping, and an inhomogeneous quantum Ising model with arbitrary connectivity and local
dissipation. In both cases, we calculate and analyze the full dissipation spectrum. Our method is applicable
to a variety of other systems, and could provide a powerful new tool for the study of complex driven-
dissipative quantum systems.
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Introduction.—Identifying symmetries provides power-
ful insights into nondissipative quantum systems, often
providing a route toward finding exact descriptions of
dynamics and thermal states. The key ingredient is usually
the direct connection between the existence of symmetry
and dynamically-conserved quantities. Turning to dissipa-
tive (open) quantum systems, the situation becomes more
subtle, as the nonunitary nature of the evolution makes the
link between symmetry and conservation laws less direct
(see, e.g., [1–6]). In the typical case of a Markovian system
described by a Lindblad master equation, one often has
only a so-called “weak symmetry” [3]. A weak symmetry
leaves the full Lindbladian invariant under a given trans-
formation while changing the system operators which
couple to dissipation (i.e., the jump operators). While this
symmetry ensures that the generator of the dynamics (i.e.,
the Liouvillian) has a block-diagonal structure, it does not
guarantee the existence of a true conserved quantity. Hence,
while such weak symmetries can simplify numerical
calculations [7,8], they are not a priori a useful tool for
obtaining analytic solutions.
In this Letter, we show that in many cases, the existence

of a continuous weak symmetry is in fact a far more
powerful tool that one might initially suspect. We show
how a weak symmetry can be exploited to fully and
analytically diagonalize a set of nontrivial Lindblad super-
operators that describe interacting, dissipative quantum
systems. As explained below, this is possible because
the weak symmetry makes an unusual kind of mean-field
decoupling exact in each symmetry-constrained block,
reducing it to an effective (but unusual) noninteracting
problem (see Fig. 1). Alternatively, the solution method can
be viewed as a kind of quantum-to-classical mapping. The
underlying mechanism arises in a wide class of models, but
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FIG. 1. (a) Schematic of the second model analyzed in this
work: N two-level systems interact via arbitrary Ising interactions
Jij, and are also subject to local dissipation, cf. Eq. (10). (b) Using
weak symmetry, one can make an exact mean-field decoupling
for each symmetry-constrained dynamical sector, leaving one
with an easily-solved but unusual independent, dissipative spin
problem. (c) A similar solution method can be used for an
incoherently-driven nonlinear bosonic mode [cf. Eq. (1)], en-
abling an exact calculation of the Liouvillian eigenvalues λm;μ.
We plot these here for jmj ≤ 10 and μ ≤ 15. Each color
corresponds to a different value of jmj. By fixing m, the level
spacing λm;μþ1 − λm;μ ¼ −κ̃m − iŨm is constant, reflecting the
noninteracting nature of the problem in each symmetry-
constrained block. We work in a rotating frame where ω0 is
shifted to 0, and set U ¼ κ, n̄th ¼ 0.1.
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for concreteness, we analyze in detail both a bosonic
example (a nonlinear bosonic mode subject to thermal
dissipation), and a dissipative spin model (a quantum Ising
model subject to single-spin dephasing and relaxation).
Both these examples are directly relevant to a variety of
systems under active experimental study. Our approach
yields closed form expressions for all eigenvalues and
eigenvectors of the Liouvillian, enabling one to clearly
identify structures that would not be apparent other-
wise. This diagonalization provides a full picture of the
dissipative dynamics, and also allows the calculation
of a variety of observable quantities (e.g., correlation
functions).
We stress that our general method is distinct from

approaches used in previous work to obtain exact descrip-
tions of specific quantum dissipative models, e.g., [9–26].
Our method provides the exact dissipative spectrum and
eigenvectors, and moreover, presents them in a simple and
intuitive form which is tailor-made to perform analytic
computations. This is crucial, as it provides the necessary
starting point if one wants to make use of the burgeoning
tool of Lindblad perturbation theory [27–30] to more
complicated systems.
Dissipative Kerr oscillator.—Consider a bosonic mode

with a Kerr (or Hubbard) type nonlinearity, subject to
Markovian thermal dissipation. The evolution of the system
density matrix ρ̂ is (setting ℏ ¼ 1):

∂tρ̂ ¼ −i
�
ω0â†âþ U

2
â†â†â â; ρ̂

�
þ κðn̄th þ 1ÞD½â�ρ̂

þ κn̄thD½â†�ρ̂≡ Lρ̂: ð1Þ

Here, â is the mode annihilation operator, ω0 (U) is the
mode natural frequency (nonlinearity), κ the energy
decay rate, and n̄th the bath’s thermal occupation. We
define D½X̂�ρ̂≡ X̂ ρ̂ X̂† − fX̂†X̂; ρ̂g=2. Equation (1) has an
obvious weak Uð1Þ symmetry, as it is invariant under
â → e−iθâ. This gives L a block-diagonal structure
[2–4,8,31], which has been used previously to simplify
numerical calculations [7,8]. We show below that some-
thing more powerful is possible: despite the nonlinearity,
the weak symmetry can also be used to analytically
diagonalize each block and thus all of L. Our analysis
complements and extends previous studies that derive exact
results for this model without explicit use of weak
symmetry [11–14]. In particular, our approach provides
simple analytic expressions for all eigenvalues and eigen-
vectors of L.
To diagonalize L, we use the formalism of third

quantization [32–34]; relevant details can be found in
Supplemental Material (SM) [35]. One first introduces
four new superoperators âLjρ̂i≡ jâ ρ̂i, âRjρ̂i≡ jρ̂ âi,
â†Ljρ̂i≡ jâ†ρ̂i, and â†Rjρ̂i≡ jρ̂â†i which we will refer to
as annihilation and creation superoperators. We will also

reserve the bold typeface to indicate a third-quantized
superoperator L → L̂. We can now express our Liouvillian
as L̂ ¼ ð−iω0 þ κ=2Þ1̂þ L̂0 þ L̂int where

L̂0 ¼ â†
�−iω0 − κ

2
ð2n̄th þ 1Þ κn̄th

κðn̄th þ 1Þ iω0 − κ
2
ð2n̄th þ 1Þ

�
â;

ð2Þ

L̂int ¼ −i
U
2
ðâ†LâL − âRâ

†
RÞðâ†LâL þ âRâ

†
R − 1̂Þ; ð3Þ

correspond to the quadratic and interacting parts of the
Lindbladian, respectively. Here, â† ¼ ðâ†L â†RÞ. The quad-
ratic part of the superoperator L̂0 is easily diagonalized via
standard third-quantization techniques [32,33]. The non-
linear quartic terms, however, represent a true interaction
of third-quantized bosons, and seemingly destroys exact
solvability.
We now exploit the weak symmetry of our system.

At the superoperator level, the weak symmetry corresponds
to the invariance of Eq. (3) under âL=R → âL=Re−iθ.
The superoperator generating this effective unitary trans-
formation is â†LâL − âRâ

†
R, which immediately implies

½L̂; â†LâL − âRâ
†
R� ¼ 0. Standard linear algebra then dictates

that L̂ is block diagonal in the eigenbasis of â†LâL − âRâ
†
R.

We can thus write L̂ ¼ ⨁mL̂m, where each block L̂m is
indexed by m, an eigenvalue of m̂≡ â†LâL − âRâ

†
R. A

simple calculation reveals that any outer-product of Fock
states jpihqj is an eigenvector of the generator m̂jpihqj ¼
½â†â; jpihqj� ¼ mjpihqj and the corresponding eigenvalue
m ¼ p − q ∈ Z characterizes the degree of coherence or
off-diagonalness in Fock space. Further, since any outer
product of Fock states of the form jpþ nihqþ nj has the
same eigenvalue as jpihqj, each block L̂m is infinite in
extent.
While weak symmetry provides a block-diagonal struc-

ture, we are still left with the seemingly formidable task of
diagonalizing the infinite-dimensional matrix correspond-
ing to each block; further, apart from m ¼ 0, each block’s
form depends on the nontrivial interaction U. As we now
show, surprisingly these remaining tasks can be done
exactly. By definition, L̂m is the full Lindbladian projected
onto the subspace spanned by eigenvectors of m̂ with
eigenvalue m. We may thus, in each block L̂m, make the
substitution m̂ → m. Next, note that the nonlinear part of L
can be written as

L̂int ¼ −i
U
2
m̂ × L̂0

0; ð4Þ

where L̂0
0 ¼ ðâ†LâL þ âRâ

†
R − 1̂Þ is quadratic in creation

and annihilation superoperators. Projecting onto the sub-
space indexed by m, we have L̂int → −iUm=2L̂0

0.
We finally obtain
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L̂m ¼ â†
�−i Um

2
− κ

2
ð2n̄th þ 1Þ κn̄th

κðn̄th þ 1Þ −i Um
2
− κ

2
ð2n̄th þ 1Þ

�
â

þ
�
−iðω0 −UÞmþ κ

2

�
1̂: ð5Þ

We thus have a crucial first result: in each symmetry-
constrained sector, L̂ becomes quadratic in creation and
annihilation superoperators, and can thus be diagonalized
exactly. It is as though a mean-field ansatz has become
exact in each block (though note the mean-field decoupling
is block dependent, and results in a Liouvillian that is not in
Lindblad form). We stress that the mere existence of a weak
symmetry was not enough for solvability, as this by itself
only guarantees the existence of the block-diagonal struc-
ture. Instead, we also needed the interacting part of the
Lindbladian to factor as in Eq. (4). Identifying this general
structure is a main result of this work.
As it is quadratic in creation and annihilation super-

operators, Eq. (5) can be diagonalized using conventional
third quantization. One ultimately needs to diagonalize a
2 × 2 matrix in each sector to obtain both the eigenvalues
and eigenvectors. We denote the Liouvillian eigenvalues
λm;μ where m labels the different symmetry-constrained
blocks (i.e., the degree of off-diagonalness), and the non-
negative integer μ labels eigenmodes in a given block. It
roughly characterizes the average number of particles in the
eigenmode. Using the above structure (see SM [35]), we
find

λm;μ ¼ −i
�
ω0 −U þ Ũm

2
ðjmj þ 1þ 2μÞ

�
m

−
1

2
½κ̃mðjmj þ 1þ 2μÞ − κ�; ð6Þ

where

Ũm ¼ jUjIm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

κ

Um

�
2

− 1þ 2i
κ

Um
ð2n̄th þ 1Þ

s
; ð7Þ

κ̃m ¼ κRe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Um
κ

�
2

þ 2i
Um
κ

ð2n̄th þ 1Þ
s

; ð8Þ

are renormalized sector-dependent nonlinearities and decay
rates, respectively. Note these are bounded by κ ≤ κ̃m ≤
κð2n̄th þ 1Þ and jUj ≤ jŨmj ≤ jUjð2n̄th þ 1Þ. If κ → 0,
Ũm → U, whereas for nonzero κ it is temperature depen-
dent. We also see that the effective damping rate in each
sector generically depends on temperature when U ≠ 0. In
Fig. 1 we plot the spectrum for jmj ≤ 10 and μ ≤ 15.
Expressions for eigenvectors are provided in SM [35].
The ability to analytically describe the eigenvectors and

eigenvalues evidently constitutes a full solution of our

system: any quantity we wish to calculate or initial state we
wish to time evolve can be readily computed using the
spectral decomposition of L̂. This spectral information
in and of itself carries a wealth of physically and exper-
imentally relevant information. We will focus on one
such example, the retarded Green’s function GRðtÞ≡
−iΘðtÞh½âðtÞ; â†ð0Þ�i which controls how the average value
hâðtÞi changes in response to a weak coherent drive applied
at time t ¼ 0. Since ρ̂ss is an incoherent mixture of Fock
states, it is an element of the m ¼ 0 block. Applying â† to
either side of the density matrix raises the coherence by
one, and thus excites all m ¼ 1 right eigenvectors. Using
the spectral decomposition of eL̂t, we show in SM [35] that

GRðtÞ ¼ −iΘðtÞ e−iðω0−UÞtþκ
2
th

coshðκ̃1þiŨ1

2
tÞ þ R1 sinhðκ̃1þiŨ1

2
tÞ
i
2
; ð9Þ

where R1 ¼ ½κ þ iUð2n̄th þ 1Þ�=ðκ̃1 þ iŨ1Þ in agreement
with Ref. [11]. Fourier transforming Eq. (9) gives us the
frequency-resolved Green’s function GR½ω�, which can
easily be accessed in several experimental platforms. In
a similar manner, higher-order response functions can be
directly tied to eigenvalues and eigenvectors for higher
m modes.
While for clarity we have focused here on a single-mode

problem, a completely analogous approach allows one
to analytically diagonalize a truly many-body model,
where we now have a set of bosonic modes, each with
Kerr nonlinearities and thermal dissipation, coupled to one
another via cross-Kerr interaction of the form Uabâ†âb̂

†b̂.
As we show in SM [35], our method applies directly here:
in each symmetry-constrained block, the nontrivial inter-
action terms become effectively quadratic. We also show
this setup remains solvable if we were to add dephasing to
each mode (as described by the dissipators 2κϕ;jD½â†j âj�ρ̂).
Dissipative Ising model.—We next show that our sym-

metry-based approach can be used for a completely differ-
ent kind of system, namely a dissipative Ising model of N
spins. The Lindblad master equation reads

∂tρ̂ ¼ −i
�X
j<k

Jjkσ̂
z
jσ̂

z
k þ

X
j

hjσ̂
z
j; ρ̂

�
þ
X
j

γ−;jD½σ̂−j �ρ̂

þ
X
j

γþ;jD½σ̂þj �ρ̂þ
X
j

γϕ;jD½σ̂zj�ρ̂≡ Lρ̂: ð10Þ

It describes N interacting two-level systems with arbitrary
Ising couplings Jjk, each with its own local magnetic field
hj. Each spin is also subject to local spin relaxation,
pumping, and dephasing characterized by the rates γ−;j,
γþ;j, and γϕ;j, respectively.
Note that L is invariant under arbitrary, independent

local rotations around the z axis of each spin, i.e.,
σ̂�j → e�iθj σ̂�j . There are thus N weak Uð1Þ symmetries,
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one for each spin, generated by the superoperators ½σ̂zj; ·�=2.
Each of these generators has two nondegenerate eigenval-
ues mj ¼ �1 whose eigenvectors are coherences j ↑j

ih↓jj ¼ σ̂þj and j↓jih↑j j ¼ σ̂−j . There is also a twofold
degenerate eigenvalue mj ¼ 0 with associated population
eigenvectors j ↑jih↑j j and j↓jih↓jj. The Lindbladian
necessarily commutes with each generator and thus takes
on a block diagonal form, where each block is indexed by
M⃗ ¼ fm1;…; mNg, i.e., the vector formed by the eigen-
values of the generators. Given that the mj ¼ �1 eigen-
values are nondegenerate whereas the mj ¼ 0 eigenvalues

are twofold degenerate, for a specific block indexed by M⃗,
we can partition our spins into a a set of “frozen” spins (i.e.,
spins j with mj ¼ �1) and “active” spins (i.e., spins j with

mj ¼ 0). Within the specific block described by a given M⃗,
the populations of the active spins can fluctuate. Formally,
if we let ρ̂M⃗ denote the density matrix projected onto the

subspace indexed by M⃗, then we have

ρ̂M⃗ ¼ ρ̂froz × ρ̂act ¼
� Y

j frozen

σ̂
mj

j

��X
s⃗act

Pðs⃗actÞjs⃗actihs⃗actj
�
;

ð11Þ

where s⃗act ¼ fsjjj activeg and sj ∈ f↑j;↓jg. In each block
ρ̂M⃗ factorizes as a product over coherences ρ̂froz and a
classical density matrix ρ̂act described entirely by a
probability distribution Pðs⃗actÞ for a ensemble of two-level
systems. If we let zðM⃗Þ denote the number of zero
eigenvalues of M⃗, which is by definition the number of
active spins, then the size of the Lindblad block indexed by

M⃗ is 2zðM⃗Þ.
Just as in the dissipative nonlinear oscillator model, the

existence of weak symmetry is not enough to make the
system analytically solvable, as it only guarantees the block
diagonal structure of Eq. (11). There are still many blocks
whose dimension is exponentially large in the number of
spins, encoding what would seem to be a complicated
dissipative many-body problem. Instead, further simplifi-
cation emerges from the form of the interaction and the fact
that a mean-field decoupling becomes exact in each
symmetry sector. We show in SM [35] that, upon projecting
into the subspace indexed by M⃗, this amounts to making the
replacement�X

j<k

Jjkσ̂
z
jσ̂

z
k; ρ̂

�
→

�X
j

Jeffj ðM⃗Þσ̂zj; ρ̂M⃗
�
; ð12Þ

where we have defined Jeffj ðM⃗Þ ¼ P
k≠j Jjkmk. Using

Eq. (12), we therefore see that within each block, mean-
field theory becomes exact: the spin-spin interaction has
been replaced by a (sector-dependent) static z magnetic

field on each spin, Jeffj ðM⃗Þ. Combined with the local
nature of the dissipation, it follows that the classical
probability describing the active spin factorizes ρ̂act ¼Q

j act ðp↑;jj ↑jih↑j j þ p↓;jj↓jih↓jjÞ and the equations of
motion for the coefficients read

∂t

�
p↑;j

p↓;j

�
¼

�−2iJeffj − γ−;j γþ;j

γ−;j 2iJeffj − γþ;j

��
p↑;j

p↓;j

�

ð13Þ

where, for the sake of compactness, we have dropped the M⃗
dependence of Jeffj .
The above exact decoupling has thus allowed us to map a

many-body quantum problem onto an effective classical
model of noninteracting spins. To see this explicitly, note
that Eq. (13) would correspond precisely to a classical
master equation for a two-state system if not for the strange
imaginary terms ∝ Jeffj on the diagonals. These terms also
admit a simple classical interpretation. Consider the ran-
dom variable ŝj ¼

R
t
0 dt

0σ̂zjðt0Þ, i.e., the integral of the
classical telegraph fluctuations of spin j. We can now
interpret 2Jeffj as a conjugate variable to this stochastic
quantity (i.e., a so-called “counting field”). Viewed as a
function of 2Jeffj , the solution to Eq. (13) allows us to obtain
the time-dependent moment-generating function of ŝj, i.e.,

Λ½2Jeffj � ¼ R
dsjPðsjÞe−2iJ

eff
j sj . In a concrete sense, one

concludes that the frozen spins are measuring the classical
fluctuations of the active spins at a rate determined by Jij.
The upshot is that our solution method can be viewed as
having made a quantum-to-classical mapping in each
symmetry-constrained block.
The above exact decoupling of spins in each symmetry

block immediately implies that all Liouvillian eigenvalues
can be written as a sum over single-spin eigenvalues λjðM⃗Þ.
A simple calculation yields

λjðM⃗Þ ¼
(∓ i2hj − Γj − 2γϕ;j; j frozen;

−Γj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
j − 4Jeffj ðJeffj þ iηjÞ

q
; j active;

ð14Þ

with Γj ¼ ðγþ;j þ γ−;jÞ=2 and ηj ¼ ðγþ;j − γ−;jÞ=2.
Equation (14) tells us that coherences j↓jih↑j j and j ↑j

ih↓jj behave as expected: they oscillate with a frequency
controlled by the local magnetic field and decay at a rate set
by the local dephasing and relaxation processes, independ-
ently of all other spins. Populations, however, both decay
and oscillate depending on the strength of the counting field
2Jeff relative to the strength of the relaxation processes. The
right and left eigenvectors factorize in a similar way, and
one only needs to solve a 2 × 2 matrix eigenvalue problem
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to determine their form. As such, we leave those details to
SM [35].
With both the eigenvectors and eigenvalues, we can

again compute any physical quantity of interest for this
model. In SM [35], we provide an example of this, for the
case where all spins are initially all pointing along the x
direction. Analogous quantities were calculated in Ref. [36]
using an alternative method. Our approach greatly sim-
plifies the calculation, and also allows insights not possible
using the trajectory method of Ref. [36], as we have access
to the full dissipation spectrum. For example, we find that
our many-body Liouvillian can exhibit an exceptional point
(EP) structure (see SM [35]), wherein the dynamics are
exceptionally sensitive to small parameter changes. Such
Lindblad EPs have been the subject of considerable recent
interest [38–40], though there are few truly many-body
examples. Our approach can also be used to analytically
find the full time-evolved many-body density matrix ρ̂ðtÞ
for an arbitrary initial condition (which would be difficult if
not impossible to do using trajectories). Finally, as shown
in SM [35], our method is also applicable to the situation
where the magnetic fields and Ising couplings are time
dependent; the symmetry and effective mean-field decou-
pling structure of the interaction remain intact. This greatly
reduces the numerical cost of time evolving the density
matrix and could be used to address problems where the
couplings and magnetic fields are random.
Similar to our discussion of the dissipative nonlinear

bosonic model earlier, we have for clarity sketched the
simplest nontrivial dissipative spin model where our
symmetry-based solution method holds. The effective
quantum-to-classical mapping we have established is in
fact valid for a large class of dissipative spin models. For
example, there are still N weak Uð1Þ symmetries if we add
to our model correlated spin loss or flips for an arbitrarily
large number of spins such as, e.g., D½σ̂−j σ̂þk �. The block-
diagonal decomposition Eq. (11) thus follows, as does the
mean-field replacement Eq. (12). The only difference is
that classical probability distribution describing the active
spins does not factorize; nevertheless, the equation of
motion in each block is exactly equivalent to a classical
master equation of correlated spins with a counting field
for each spin Jeffj . This suggests that our approach could be
a powerful means to attack a range of dissipative spin
models.
Conclusion.—Our work shows how continuous weak

symmetries can enable the analytic solution of a wide class
of interacting dissipative quantum models. While we
analyzed two specific examples (one bosonic, the other
spin based), we stress that the method could be applied to a
variety of other systems. It also provides a powerful starting
point for systematic approximation methods for systems
with additional terms that break the relevant weak sym-
metry. For example, as our approach provides simple
analytic expressions for all eigenvalues and eigenvectors,

it could be directly combined with Lindblad perturbation
theory [27–29]. In future work, it would be interesting to
reformulate the general structure we have exploited here in
terms of a dissipative Keldysh action [41,42]; this could
enable an extension of our method to non-Markovian
dissipative systems.
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