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The existence of the Xð3872Þ resonance extremely close to the D�0D̄0 threshold implies that neutral
charm mesons have an approximate nonrelativistic conformal symmetry. Systems consisting of these
mesons with small kinetic energies produced in a short-distance reaction are unparticles in the sense that
they can be created by operators with definite scaling dimensions in a nonrelativistic conformal field theory.
There is a scaling region in which their energy distribution has power-law behavior with an exponent
determined by the scaling dimension of the operator. The unparticle associated with two neutral charm
mesons produces a peak in the recoil momentum spectrum of K� in inclusive decays of B� that has been
observed. The scaling dimensions of the unparticles associated with three neutral charm mesons are
calculated. They can be determined experimentally by measuring the invariant mass distributions for XD0

or XD�0 in inclusive prompt production at the Large Hadron Collider.
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Introduction.—An elementary particle can be defined to
be an irreducible representation of the Poincaré group. The
concept of an “unparticle” was introduced by Georgi [1].
An unparticle is a system created by a local operator with a
definite scaling dimension in a conformal field theory. It
can therefore be defined to be an irreducible representation
of the conformal symmetry group. The conformal group
on 3þ 1-dimensional Minkowski space-time is a 15-
dimensional group that includes the Poincaré group and
scale transformations as subgroups. A relativistic unparticle
is characterized by a single number: the scaling dimension
Δ of the operator. If the conformal field theory belongs
to a hidden sector beyond the standard model of particle
physics, the unparticle cannot be observed directly.
However, it can be observed indirectly through the dis-
tribution of standard model particles produced in associ-
ation with the unparticle [1]. There are aspects of the
distribution determined by Δ. The existence of unparticles
in a hidden sector would produce novel signals in high-
energy colliders [2–4]. The CMS Collaboration has
searched for signals of unparticles in pp collisions at
the Large Hadron Collider (LHC) [5–7].

Hammer and Son recently pointed out that unparticles
can also arise in nonrelativistic physics [8]. The non-
relativistic conformal symmetry group (also called
the Schrödinger group) on 3þ 1-dimensional Galilean
space-time is a 13-dimensional group that includes the
Galilean group and scale transformations as subgroups. A
nonrelativistic conformal field theory is a field theory with
the nonrelativistic conformal symmetry [9], and a “non-
relativistic unparticle” is a system created by a local
operator with a definite scaling dimension in such a theory.
In contrast to the relativistic case, a nonrelativistic unpar-
ticle is characterized by two numbers: its mass M and the
scaling dimension Δ of the operator [8].
A physical realization of nonrelativistic unparticles is

neutrons with small relative momenta produced by a short-
distance reaction [8]. Neutrons have a negative scattering
length a that is much larger than their effective range. A
system of low-energy neutrons therefore has a scaling
region in which their behavior is approximately scale
invariant. In the unitary limit 1=a → 0, their low-energy
behavior can be described by a nonrelativistic conformal
field theory. A system of N neutrons created by a local
operator with scaling dimension ΔN is an unparticle. Its
mass is Nmn, where mn is the kinetic mass of the neutron.
For the two-neutron unparticle, the lowest scaling dimen-
sion is Δ2 ¼ 2. For the three-neutron unparticle, the lowest
scaling dimension is Δ3 ¼ 4.272 72.
The N-neutron unparticle can be created by a short-

distance nuclear reaction of the form A1 þ A2 →
Bþ ðnn…Þ [8]. The invariant energy E of the N neutrons,
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which is their total kinetic energy in their center-of-
momentum (CM) frame, can be determined by measuring
the momentum of the recoiling nucleus B. There is a
scaling region of E in which the differential cross section
has the power-law behavior EΔN−5=2dE. The naive pre-
diction for N noninteracting particles is Eð3N−5Þ=2dE. The
nontrivial power-law behavior is the smoking gun for an
unparticle.
In this Letter, we point out that systems consisting of the

neutral charm mesons D0, D�0, D̄0, and D̄�0 with small
relative momenta produced by a short-distance reaction are
unparticles. Their unparticle nature arises from the exist-
ence of the Xð3872Þ resonance extremely close to the
threshold in the JPC ¼ 1þþ channel of D�0D̄0 and D0D̄�0.
The Xð3872Þ resonance was discovered by the Belle
Collaboration in 2003 [10]. Its quantum numbers were
determined by the LHCb Collaboration in 2013 to be
JPC ¼ 1þþ [11]. The most precise measurements of the
mass by the LHCb Collaboration give an energy relative to
the D�0D̄0 threshold of εX ¼ −0.07� 0.12 MeV [12,13],
which implies jεXj < 0.22 MeV at the 90% confidence
level. The quantum numbers and the tiny value of εX
imply that the wave function of X at long distances is
that of a charm-meson molecule with the flavor structure
ðD�0D̄0 þD0D̄�0Þ= ffiffiffi

2
p

. The wave function at short dis-
tances is unknown, but the possibilities include the χc1ð2PÞ
charmonium state and a compact tetraquark with constitu-
ents cc̄qq̄ (see, e.g., Ref. [14]). If εX > 0, then X is a virtual
state like the dineutron, in which case the unparticle physics
of neutral charm mesons is qualitatively like that of
neutrons. We assume that εX < 0 so that X is a bound
state, in which case the unparticle physics of neutral charm
mesons exhibits qualitatively new features. A peak from the
two-charm-meson unparticle has been observed in inclu-
sive B meson decays. We calculate the nontrivial scaling
dimensions for the three-charm-meson unparticles, and we
explain how they can be determined experimentally at
the LHC.
Two-charm-meson unparticle.—The LHCb Collaboration

has analyzed the line shape of Xð3872Þ in the J=ψπþπ−
channel using a Flatte-inspired amplitude [12]. In addition
to the pole for X near the D�0D̄0 threshold, their fitted
amplitude has a second pole about 3.6 MeV below the
threshold. We adopt ε0 ¼ 3.6 MeV as an estimate of the
energy scale associated with the range of interactions
between charm mesons. The behavior of a system of
neutral charm mesons whose kinetic energies in their
CM frame are all in the scaling region between jεXj and
ε0 is approximately scale invariant. In the limit εX → 0,
their low-energy behavior can be described by a non-
relativistic conformal field theory. A system of neutral
charm mesons created by a local operator with definite
scaling dimension in this field theory is an unparticle. For
the operator that creates charm mesons in the resonant
C ¼ þ channel ðD�0D̄0 þD0D̄�0Þ= ffiffiffi

2
p

, the lowest scaling

dimension is Δ2 ¼ 2. We refer to the system created by this
operator, which consists of D�0D̄0 and D0D̄�0 scattering
states and also the Xð3872Þ resonance, as the “X unpar-
ticle” [see Fig. 1(a)]. The corresponding scaling dimension
for the C ¼ − channel ðD�0D̄0 −D0D̄�0Þ= ffiffiffi

2
p

is three,
twice the scaling dimension 3=2 of an operator that creates
a single nonrelativistic particle. The smoking gun for the X
unparticle is power-law behavior determined by the scaling
dimension Δ2 ¼ 2.
Given any exclusive reaction that produces Xð3872Þ and

a single recoiling particle with relative momentum much
larger than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MDε0

p
, the X unparticle can be observed by

measuring the momentum distribution of that particle in the
corresponding inclusive reaction. The X unparticle appears
as a narrow peak in the momentum distribution related by
kinematics to a peak near 3872 MeV in the invariant
mass distribution of the other particles. An example is the
inclusive decay B� → K� þ anything. The BABAR
Collaboration has collected a sample of fully reconstructed
B� events in eþe− annihilation at the ϒð4SÞ resonance and
then measured the momentum of a K� in the events [15]. In
addition to peaks in the momentum distribution associated
with known charmonium states, there is a significant peak
near 1141 MeV corresponding to recoil against a system
with invariant mass near 3872 MeV. This peak can be
identified with the X unparticle.
In the decay of B�, the unparticle nature of the system

recoiling against the K� is reflected in the invariant mass
distribution of the threshold enhancement in D�0D̄0 and
D0D̄�0. The production rates from the creation of the X
unparticle at short distances can be calculated in an effective
field theory in which the only interaction between charm
mesons is a contact interaction that gives a large scattering
length a in the channel with theX resonance. If theXð3872Þ
is a bound state, a is positive and the energy of Xð3872Þ
relative to the D�0D̄0 threshold is εX¼−1=ð2μa2Þ, where μ
is the reduced mass of D�0D̄0. The production rate RX of
Xð3872Þ is the product of jεXj1=2 and a short-distance factor.
The differential production rate of D�0D̄0 is the product of

(a)

(b)

FIG. 1. (a) The creation of the X unparticle at a point produces
D�0D̄0 and D0D̄�0 scattering states and the Xð3872Þ bound state.
(b) The creation of the XD unparticle produces D0D�0D̄0,
D0D0D̄�0, and D0Xð3872Þ. Charm mesons and Xð3872Þ are
shown by single and double lines, respectively.
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the same short-distance factor and a function of the invariant
energy E of the charm mesons [16]. If E ≪ ε0, the
production rate can be expressed as

dRD�0D̄0 ¼ RX

ffiffiffiffi
E

p

4πjεXj1=2ðjεXj þ EÞ dE: ð1Þ

As shown in Fig. 2, dR=dE increases from zero at theD�0D̄0

threshold to a peak near jεXj, and then it decreases. There is a
scaling region between jεXj and ε0 in which dR=dE
decreases with the power-law behavior EΔ2−5=2 ¼ E−1=2.
Beyond the scaling region, there is a crossover to an
increasing production rate, so dR=dE has a local minimum
at an energy of order ε0. (This crossover is not shown in
Fig. 2.) The unparticle nature can be verified by observing
the power-law behavior in the scaling region. The BABAR
experiment did not have enough data to resolve the structure
of the peak associated with the X unparticle, but the power-
law behavior may be observable in the much larger datasets
that will be collected by the Belle II experiment.
The prompt production of Xð3872Þ at a hadron collider is

the contribution that does not come from the weak decay of
a b hadron. It is dominated by the creation of a charm
quark-antiquark pair that evolves at short distances into two
charm mesons. If the two charm mesons are neutral and
have small relative momentum, they can form the X
unparticle. The Xð3872Þ component of the X unparticle
can be observed at a hadron collider through its decay into
J=ψπþπ−, because the decay J=ψ → μþμ− provides a
trigger. Cross sections for the inclusive production of
Xð3872Þ in pp collisions at the LHC have been measured
by the LHCb and CMS Collaborations [17,18]. The D�0D̄0

andD0D̄�0 components of the X unparticle cannot be easily
observed at a hadron collider.
Three-charm-meson unparticles.—We now consider

unparticles associated with three neutral charm mesons.
They consist of scattering states of three charm mesons and

scattering states of X and one charm meson. We refer to the
unparticle consisting of D0D�0D̄0, D0D0D̄�0, and D0X as
the XD unparticle [see Fig. 1(b)] and the unparticle
consisting of D�0D�0D̄0, D�0D0D̄�0, and D�0X as the
XD� unparticle.
Systems consisting of three low-energy neutral charm

mesons have been studied previously by Canham et al.
[19]. They calculated the low-energy differential cross
sections for the scattering of D0X and D�0X in an effective
field theory in which the charm mesons have a large
scattering length a in the channel with the X resonance.
They solved the Skorniakov–Ter-Martirosian (STM) [20]
integral equation for partial-wave scattering amplitudes as
functions of the kinetic energy E. The S-wave scattering
lengths for D0X and D�0X are equal to a multiplied by a
large negative coefficient: aD0X ¼ −9.7a, aD�0X ¼ −16.6a.
Thus the threshold cross sections 4πa2DX are more than 2
orders of magnitude larger than the threshold cross section
2πa2 for D�0D̄0 scattering.
The scaling dimensions of the operators that create the

XD and XD� unparticles can be determined from the
homogeneous form of the S-wave STM equation in
Ref. [19]. The S-wave STM equation is an integral
equation for the amplitude T0ðk; pÞ for the scattering of
DX (where D is D0 or D�0) from relative momentum p to
relative momentum k with off-shell energy E. The homo-
geneous S-wave STM equation reduces in the limits
E → 0, εX → 0 to

T0ðk;pÞ¼
Z

∞

0

dq
T0ðk;qÞ

4πr
ffiffiffiffiffiffiffiffiffiffiffi
1−r2

p
p
log

p2þq2þ2rpq
p2þq2−2rpq

; ð2Þ

where r ¼ 1=ð1þMD�0=MD0Þ ¼ 0.481 66 if D is D0

and r ¼ 1=ð1þMD0=MD�0Þ ¼ 0.518 34 if D is D�0. The
condition for a solution with the power-law behavior
T0ðk; pÞ ¼ ps−1 can be derived by inserting this ansatz
into Eq. (2) and evaluating the integral over q,

sin½s arcsinðrÞ� ¼ 2r
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
s cosðsπ=2Þ: ð3Þ

The smallest positive solution for s is 0.601 19 if D is D0

and 0.586 97 if D is D�0. The scaling dimension Δ of the
operator that creates the unparticle isΔ ¼ sþ 5=2. The XD
unparticle has mass MD�0 þ 2MD0 and scaling dimension
Δ3 ¼ 3.101 19. The XD� unparticle has mass 2MD�0 þ
MD0 and scaling dimension Δ3� ¼ 3.086 97.
The solutions to the STM equation in Ref. [19] can be

extended out to the scaling region of the total kinetic energy
E of XD0 or XD�0 beyond the X breakup thresholds. The
relative S-, P-, and D-wave contributions to the D0X and
D�0X cross sections are shown as functions of E in Fig. 3.
There is a scaling region at large Ewhere the cross sections
for D0X and D�0X both scale as E−1.6. It is difficult to
resolve the differences between the exponents for D0X and

0 2 4 6 8 10
E [MeV]

dR
/d

E
 [a

rb
itr

ar
y 

un
its

]

0.01 0.1 1 10

FIG. 2. Production rate dR=dE for D�0D̄0 from the creation of
neutral charm mesons at short distances as a function of the
invariant energy E (solid line) for εX ¼ −0.1 MeV. The dotted
line shows the E−1=2 scaling behavior. The inset is the same plot
on a log-log scale.
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D�0X numerically. The exponents are presumably deter-
mined by the scaling dimensions Δ3 and Δ3�, but we have
not succeeded in determining them analytically.
The XD and XD� unparticles could be observed at a

future eþe− collider operating at an energy just above the
threshold for Bþ

c B−
c at 12.55 GeV. If a sample of fully

reconstructed B�
c events is collected, the unparticle could

be observed through the momentum distribution of
π� or K� in the events. The XD and XD� unparticles
determine the invariant mass distribution of the recoiling
system near the D0D�0D̄0 threshold at 5.737 GeV and
near the D�0D�0D̄0 threshold at 5.879 GeV. There is a
scaling region of the invariant energy E relative to the
threshold where the distribution has power-law behavior:
EΔ3−5=2dE ¼ E0.6012dE for the XD unparticle and
EΔ3�−5=2dE ¼ E0.5870dE for the XD� unparticle. The rate
of increase is much smaller than the naive prediction E2dE
for three noninteracting particles.
The prompt production of Xð3872Þ at a hadron collider

must include a small contribution from the creation of two
charm quark-antiquark pairs that evolve at short distances
into four charm mesons. If three of the charm mesons are
neutral and have small relative momenta, they can form the
XD or XD� unparticle. The D0X and D�0X components of
these unparticles can be observed at a hadron collider
through the decay of Xð3872Þ into J=ψπþπ−, because the
decay J=ψ → μþμ− provides a trigger. The amplitude for
producing DX with kinetic energy E from the creation of a
three-charm-meson unparticle at a point can be calculated
by solving the STM equation with a constant inhomo-
geneous term gXD,

Γðp;EÞ ¼ gXDþ
Z

∞

0

dqq
2πrp

Q0

�
p2þq2− 2μEþ 1=a2

2rpq

�

×
Γðq;EÞ

−1=aþ½ðμ=μXDÞq2− 2μEþ 1=a2�1=2 ; ð4Þ

where Q0ðzÞ ¼ 1
2
log½ðzþ 1Þ=ðz − 1Þ� and μXD is the XD

reduced mass. The STM equation is solved with E replaced
by Eþ iϵ in the limit ϵ → 0þ. The amplitude Γðp;EÞ is put
on shell by setting p ¼ ð2μDXEÞ1=2. The production rate
dR=dE can then be obtained from jΓj2 integrated over
phase space. For E extremely close to the DX threshold,
dR=dE is determined by the tiny energy scale εDX¼
1=ð2μDXa2DXÞ, which is εD0X¼0.82 or εD�0X ¼ 0.26 keV.
As shown in Fig. 4, dR=dE increases from zero at the
threshold to a peak near εDX, and it then decreases to a local
minimum at an energy of order jεXj. Beyond the minimum,
there is a scaling region where dR=dE increases with a
power-law behavior. The power-law behavior of the ampli-
tudes Γ forD0X andD�0X are both determined numerically
to be E−0.21, with an error in the last digit of the exponent.
There is a crossover to a more rapidly increasing production
rate at an energy of order ε0. (This crossover is not shown
in Fig. 4.)
The power-law behavior in the scaling region can be

determined from the general analytic result for the three-
point Green’s function in coordinate space for primary
operators in a nonrelativistic conformal field theory. We
take the three operators to be an operator with scaling
dimension Δ3 (or Δ3�) and mass M3 ¼ M1 þM2, an
operator with scaling dimension Δ2 ¼ 2 and mass M2,
and a single-particle operator with scaling dimension Δ1 ¼
3=2 and mass M1. The three-point function was first
deduced by Henkel and Unterberger from the three-point
function for a relativistic conformal field theory in two
higher dimensions [21]. It has also been obtained by
Fuertes and Moroz [22] and by Volovich and Wen [23]
using holography and the AdS=CFT correspondence. The
Fourier transform of the three-point function has a pole in
the energy E1 of the single particle. We take the total energy
in the CM frame to be E and the momentum of the particle
to be p. The residue of the pole at E1 ¼ p2=ð2M1Þ is

001110.0
E/|εX|

0.001

0.1

10

1000

σ L/(
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FIG. 3. Partial-wave cross sections σL for D0X (solid curves)
andD�0X (dashed curves) as functions of the kinetic energy E for
L ¼ 0, 1, 2. The dotted line shows the E−1.6 scaling behavior.
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FIG. 4. Production rates dR=dE for D0X (solid curve) and
D�0X (dashed curve) from the creation of neutral charm mesons
at short distances as functions of the invariant energy E. The
dotted lines show the Eþ0.08 scaling behavior.
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GðE; pÞ ¼ C
Z

1

0

dxxΔ
12
3
=2−1ð1 − xÞΔ13

2
=2−1ð1þ r12xÞ3=2

× ½ð1 − xÞp2=ð2M12Þ − ð1þ r12xÞE�ðΔ23
1
−5Þ=2;

ð5Þ
where Δij

k ¼ Δi þ Δj − Δk, M12 ¼ M1M2=ðM1 þM2Þ,
r12 ¼ M1=M2, and C is a constant. The amplitude for
producing the unparticle and the single particle is obtained
by dividing by the unparticle propagator ½E − E1 − p2=
ð2M2Þ�Δ2−5=2. The amplitude Γ for producing Xð3872Þ and
a single charm meson with total energy E ≫ jεXj is then
obtained by taking the limit p → ð2M12EÞ1=2 and multi-
plying by jεXj−1=2. This amplitude is determined by the
integral in Eq. (5) near the lower end point of x. Its scaling
behavior is E−Δ12

3
=2 ¼ EðΔ3−7=2Þ=2. Our analytic predictions

for the exponents are −0.1994 for D0X and −0.2065 for
D�0X. Both are consistent with our numerical result −0.21
for the exponent for Γ from the solutions to the STM
equation (4). Figure 4 shows the production rate dR=dE,
which is given by jΓj2 times a phase space factor

ffiffiffiffi
E

p
,

leading to E0.08 scaling. The conformal field theory
prediction for dR=dE is EΔ3−3 ¼ E0.1012 for D0X and
EΔ3�−3 ¼ E0.0870 for D�0X, compared to the naive predic-
tion E1=2 for two noninteracting particles.
Conclusion.—Nonrelativistic unparticles arise naturally

in any system that can be described by a nonrelativistic field
theory close to a conformally invariant limit. They can be
used to identify reactions with power-law behavior charac-
terized by nontrivial exponents. We have argued that
systems of neutral charm mesons with small invariant
energy are unparticles. We emphasize that unparticle phys-
ics occurs only in systems that do not exhibit the Efimov
effect, because Efimov physics breaks the scale symmetry
down to a discrete scale symmetry [24]. Unparticle physics
can arise in systems of D and D� mesons, because the
attraction of three charm mesons is below the critical
strength for the Efimov effect. It would be interesting to
find other examples of nonrelativistic unparticles in nature.
One could, for example, exploit the remarkable control of
interactions that is possible with ultracold atoms [25] to
engineer new systems with unparticles.
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