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We propose a tensor network approach to compute amplitudes and probabilities for a large number of
correlated bitstrings in the final state of a quantum circuit. As an application, we study Google’s Sycamore
circuits, which are believed to be beyond the reach of classical supercomputers and have been used to
demonstrate quantum supremacy. By employing a small computational cluster containing 60 graphical
processing units (GPUs), we compute exact amplitudes and probabilities of 2 x 10° correlated bitstrings
with some entries fixed (which span a subspace of the output probability distribution) for the Sycamore
circuit with 53 qubits and 20 cycles. The obtained results verify the Porter-Thomas distribution of the large
and deep quantum circuits of Google, provide datasets and benchmarks for developing approximate
simulation methods, and can be used for spoofing the linear cross entropy benchmark of quantum
supremacy. Then we extend the proposed big-batch method to a full-amplitude simulation approach that is
more efficient than the existing Schrodinger method on shallow circuits and the Schrodinger-Feynman
method in general, enabling us to obtain the state vector of Google’s simplifiable circuit with n = 43 qubits
and m = 14 cycles using only one GPU. We also manage to obtain the state vector for Google’s
simplifiable circuits with n = 50 qubits and m = 14 cycles using a small GPU cluster, breaking the
previous record on the number of qubits in full-amplitude simulations. Our method is general in computing
bitstring probabilities for a broad class of quantum circuits and can find applications in the verification of
quantum computers. We anticipate that our method will pave the way for combining tensor network—based
classical computations and near-term quantum computations for solving challenging problems in the

real world.
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An essential question in near-term quantum computation is
whether programmable quantum devices are able to perform
beyond the ability of classical computations in specific
computational tasks. An ideal example is sampling from a
random quantum circuit [1-8]. In 2019, Google’s quantum
computing group released the Sycamore circuits [1] with
n = 53 qubits and demonstrated the “quantum supremacy”
[8,9] by showing that they can experimentally solve the noisy
sampling task from the output distribution Py (s) of the
Sycamore circuit U in the computational basis |s), which
would cost 10 000 years on modern supercomputers.

However, despite the great success of the experiments,
we note that the critical basis for the assertion of quantum
supremacy, the accuracy of sampling in terms of the linear
cross-entropy benchmark (XEB), and the running time of
classic simulations still leave some space for further
discussions. First, Google was only able to compute the
exact XEB values for circuits for the simplifiable circuits
(with EFGH sequence) with m = 14 cycles and estimated
the XEB values for the supremacy circuits (with
ABCDCDAB sequence) using extrapolations [1]. This
means that the fidelity of samples generated from the
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quantum supremacy circuits is not verified. Second, the
estimate of computational time was based on a classic
simulation method: the Schrodinger-Feynman algorithm
[1,2,10]. Potentially there could be new algorithms that are
more efficient than the algorithm used by Google, demand-
ing much less computational time than the estimate.
There are basically two kinds of methods for simulating
quantum circuits. The first kind stores and evolves the full
quantum state vector y and is known as the Schrodinger
method. Since bitstring probabilities Py (s) = |{y|s)|?> are
known, sampling from the bitstring space is easy and the
computational complexity is linear in the number of depth
my; thus, it is very efficient for quantum circuits with a small
number of qubits. Google used this method for simulating
circuits up to 43 qubits [1] with the largest instance run on
the Jiilich supercomputer with 100000 cores and 250
terabytes memory. However, for a large number of qubits,
the method suffers from an exponential space complexity.
The largest instance that has been simulated has 49 qubits
[11], beyond which the size of total RAM becomes the
bottleneck even with supercomputers. IBM has justified
theoretically that the 53-qubit state vector of the Sycamore
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circuits can be stored and evolved if one could employ not
only all the RAM but also all the hard disks of the Summit
supercomputer. However, the experiment has not been done
yet. To address the issue of exponential space complexity,
Google used the Schrodinger-Feynman algorithm [2,10]
which breaks the circuits into two parts, connected using
Feynman path integrals, and each part is simulated using
the Schrodinger method. Based on this method, Google
estimated that simulating the Sycamore circuits with 20
cycles requires a 10 000-year running time on the Summit
supercomputer.

The second kind of method does not store 2" bitstring
probabilities in memory but computes one bitstring prob-
ability or a small batch of them based on tensor networks
[5.8,10,12-21]. Quantum circuits can be treated as par-
ticular tensor networks with unitary constraints. Given an
initial state and the bitstring representing the measurements
at the end, contraction of the tensor network gives the
amplitude of the output bitstring. The space complexity
of the tensor network method is controlled by the size
of the largest tensor encountered during the contraction,
which equals the exponential of treewidth of the line
graph corresponding to the tensor network [12]. For
shallow circuits where the treewidth is small, the tensor
network method is very efficient even for circuits with a
large number of qubits [5,14-16,21]. However, the tensor
network method is not scalable with the circuit depth
because the complexity is usually exponential to the depth
and hence very expensive for large circuits with sufficient
depth. For the Sycamore circuits with 20 cycles, a recent
work [19] estimated that computing probabilities for a
batch of 64 bitstrings requires about 833 seconds using a
Summit-compatible supercomputer. To the best of our
knowledge, so far no work has ever successfully obtained
the probability of even one bitstring for the Sycamore
circuit with 20 cycles. More seriously, sampling from the
bitstring space is difficult for the tensor network method
because the computational complexity is proportional to
the number of samples one demands. In order to obtain
enough bitstrings, e.g., for reaching a XEB value that is
comparable to Google’s hardware samples, the tensor
network contraction has to be repeated many times, making
the overall computation intractable.

In this Letter, we propose a tensor network method
to obtain a large number of correlated bitstring ampli-
tudes and probabilities at once based on the careful
design of subspace to enumerate (or sample) from that
we coin as the “big-batch method.” It can be regarded as
an intermediate between the full-state vector method and
the single (or small-batch) amplitude method. It is more
efficient than the Schrodinger-Feynman algorithm and the
existing tensor-network methods for computing proba-
bilities of a large number of correlated samples from the
Sycamore circuits and can be extended to full-amplitude
simulations.

Big-batch simulation of quantum circuits.—Our idea
is to combine the advantages of the full-state vector
method and the single-amplitude tensor network method
using a subspace simulation. As depicted in Fig. 1, we
separate n qubits in the final state (at the rightmost layer in
the figure) into two groups with group sizes n; (blue)
and n, (red), respectively. An arbitrary bitstring s is then
represented as a concatenation of partial bitstrings s; and s,,
and the probability for the bitstring can be expressed as
Py(s) = Py(sy;s,), the joint probability of s; and s,. With
n, =0, the method is identical to the single-amplitude
estimation approach using tensor networks. With n, small,
it is essentially the idea that has been explored in [1,10,19],
where several qubits at the final state are selected manually
and kept open, giving a small batch (typically 64) of ampli-
tudes by a single contraction. However, there are several
difficulties for using a large batch size n,. First, using
more open qubits significantly increases the contraction

FIG. 1. The top panel presents a pictorial representation of the
3-dimensional tensor network corresponding to a quantum
circuit. The leftmost layer represents the initial state, and the
rightmost layer represents the final state, where the blue circles
represent measured (closed) qubits, which fix the entries in the
final bitstring s, and the red circles represent open qubits, where
the corresponding entries in s can vary. The yellow plane C cuts
into the tensor network and separates the network into two parts,
Ghead and G, depicted in the bottom left panel. The Gyeaq
contains all closed qubits, and G,; includes all the open qubits.
Both are further partitioned into subgraphs hierarchically until the
size of the subgraph is smaller than 60. The bottom right panel
displays the bottleneck between Gy.,q and G,; given by C.
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complexity over single-amplitude contraction. In the liter-
ature, only a small number (typically 6) of open qubits are
selected to control the complexity increase. Second, finding
an optimal combination of n, qubits is a hard combinatorial
optimization problem, particularly when the cost for
evaluating the quality of the combinations is very high.

In this work, we aim to select a large number of open
qubits n, without significantly increasing the overall
computational cost. To this end, rather than selecting open
qubits manually, we first find a (special) contraction order
O (which indicates a sequence of pairwise contractions to
perform) with a good space and time complexity and then
choose the open qubits based on the order.

For large and deep circuits, e.g., the Sycamore circuits,
the space complexity for contracting the full tensor network
with a large n, open indices are typically out of reach even
with a near-optimal contraction order. So, we proceed by
enumerating all possible partial bitstrings s,, that is, trading
off space complexity using time complexity by enumerat-
ing all possible ways for closing the open qubits. However,
this approach causes a serious issue on the time complexity:
one needs to repeat the contraction for 22 times, which is
intractable. To resolve this issue, we demand the contrac-
tion order found in the first place to satisfy a special
constraint: detecting a “big-head structure” of the tensor
network by identifying a bottleneck, as illustrated in Fig. 1.
Given a final-state bitstring s, the identified bottleneck
separates the whole network into two parts: the head
network G ..q containing all the closed end qubits, and
the tail tensor network G; containing all the open end
qubits, connected by n, edges. In the contraction order O,
Gread and Gy,; are contracted independently, resulting in
two vectors Vieq(s;) and vy (s,). The amplitude of s is
computed at the final step of contraction in O as the inner
product of the two vectors w(§) = Vieaq(S1) * Viait (52). Since
all n, open qubits are located at G, by fixing the partial
bitstring s, one only needs to compute Vy,,q(s;) once and
then reuse it to obtain amplitude w(s) for every s,. By
carefully designing the contraction order O, we can put
dominating computational cost to G,.,4, With the bottleneck
n. small enough such that vy.q(s;) can be stored and
reused. In this way, amplitudes of 2”2 correlated bitstrings
can be computed with computational complexity almost
identical to that of computing one bitstring.

The key component of the big-head simulation is finding
a contraction order O satisfying the constraints described in
the last section. We design the order-finding algorithm
relying on a partitioning algorithm that splits the whole
tensor network into two parts, G..q and G, using the
“first cut” C cutting n, edges. In Fig. 1, we give a pictorial
illustration of the first cut made on a 3-dimensional tensor
network. The partition algorithm tries to minimize the cut
size n,, given constraints on the group sizes {n;,n,}. To
find a first cut and the top partition (as illustrated in Fig. 1),
we need to make sure the computational complexity of

contracting two networks is acceptable. We achieve this by
hierarchically partitioning [13,19,22] each subgraph into
two smaller subgraphs using a clustering algorithm until
every subgraph is small enough (set to 60 tensors in this
work). The constraint for hierarchical partitioning is that
both the time and space complexity of the individual
contraction must be smaller than target values. The hier-
archical partitioning also gives a contraction order Oy tO
the coarse-grained graph, treating the finest subgraphs as
vertices. After the partitioning, we contract all the finest
subgraphs using a greedy contraction order and then
contract the coarse-grained graph according to O yyrse-

For deep quantum circuits, the space complexity of the
found order is still too large, so we employ the dynamic
slicing method [13,15,17,19,20,23], which selects a set of
n, edges from the tensor network and enumerates the
indices associated with the edges. This breaks the overall
contraction task into 2”¢ subtasks, each of which has much
smaller space and time complexity and hence can be
contracted independently.

We focus on Google’s Sycamore circuits with m = 20
cycles, which have been used for demonstrating quantum
supremacy. The Sycamore circuits have n = 53 qubits
locating on a 2-dimensional layout (see Fig. 1). Each cycle
of operations contains a layer of single-qubit gates (randomly
sampled from {\/)_( ANY W }) and two-qubit fSim gates
with different parameters ¢ and 6. The fSim gates have
decompositional rank 4 and hence are believed to be much
harder to simulate than the controlled-Z gates even in the
approximation level [24].

Computing bitstring probabilities in the subspace.—We
first simplify the quantum circuit by absorbing single-qubit
gates into two-qubit gates, resulting in a tensor network
with n = 381 nodes, and then find a contraction order for
the network that partitions the tensors into two subgraphs
(ghead and gtail) with sizes Nhead — 345 and Nl — 36,
respectively. We determined 21 open qubits in G;. We
assign 32 entries of s, i.e., the other part of the bitstring
corresponding to closed qubits, to 0. In contracting Gyeqq
for obtaining the vy.,q vector, we use the dynamic slicing
method [13,15,17,19,20,23] and divide the Gy.,q contrac-
tion task into 22* subtasks, each of which has space
complexity 2*° to fit into 32 G memory of a graphical
processing unit (GPU). The time complexity of contracting
Ghead is 4.51 x 10", which dominates the overall computa-
tional complexity for obtaining 22! bitstring amplitudes.
The computational cost for obtaining a different number of
bitstrings in different algorithms is compared in Table I. We
remark that our computational cost for obtaining 2 x 10°
bitstring probabilities is much lower than the estimated
computational cost of the Shrodinger-Feynman method
used by Google [1] and is also slightly lower than the
computational complexity for obtaining 64 amplitudes in
the state-of-the-art tensor network method [19]. The algo-
rithm can be trivially parallelized on multiple GPUs. So, in
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TABLEI. Computational cost of different methods for obtaining bitstring probabilities of the Sycamore circuit with 53 qubits and 20
cycles.

# bitstrings Time complexity Space complexity Computational time Computational hardware
Google [1] 10° e e 10000 years Summit supercomputer
Cotengra [13] 1 3.10 x 10?2 27 3088 years One NVIDIA Quadro P2000
Alibaba [19] 64 6.66 x 108 2% 267 days One V100 GPU
Ours 2097152 451 x10'8 230 149 Days One A100 GPU

our experiments, we employed a small computational
cluster composed of 60 NVIDIA GPUs. The overall com-
putation cost was about 5 days. More details about the
algorithm and the computations can be found in the
Supplemental Material [25].

In this work, we fix 32 entries as s; = {0,0,0,...,0},
and enumerate all possible combinations of the other 21
entries in the bitstring. This produces a set of 22! correlated

bitstrings, denoted as Q = {s;:s%}2!,. Some bitstrings
samples can be found in the Supplemental Material [25].
We plot the histogram of the obtained 22! bitstring
probabilities in Fig. 2, where we can see that the obtained
distribution fits perfectly to the Porter-Thomas distribu-
tion [8,26,27]. The minimum and the maximum proba-
bility of bitstrings are P,;, = 8.04 x 1078 x 27> ~ 0 and
P = 16.1 x 2733 respectively. Since the exact proba-
bilities of 22! bitstrings are stored, we can postselect a
subset of bitstrings such that the total probability is very
high. This gives a way to generate a large number of (e.g.,
1 x 10°) bitstrings with high probability, achieving a high
XEB value. We emphasize that a high XEB value does not
necessarily indicate a high fidelity here because the post-
selection only samples from a subspace of the target
distribution. So this can be treated as a “spoofing” to the
XEB benchmarking. The quantum threshold assumption

Prob(Np)
Prob(Np)
=
<

0 5

10 15 20 25
Np

FIG. 2. Left: Histogram of bitstring probabilities P (s) =
Py(sy;s,) for 22! correlated bitstrings obtained from the Syc-
amore circuit with n = 53 qubits, m = 20 cycles, sequence
ABCDCDAB, seed 0, with the assignment of partial bitstring
s; fixed to {0,0,...,0}. In the figure, N = 2%, p denotes the
probability of bitstring Py (s). Right: Histogram of probabilities
of all 2°° bitstrings obtained from the Sycamore circuit with n =
50 qubits, m = 14 cycles, sequence EFGH. The red line in the
figures represent the Porter-Thomas distribution [1].

and linear cross-entropy quantum threshold assumption
conjectures [2,6] have stated that there cannot be any
algorithm that can spoof linear cross entropy unless this
algorithm can also simulate circuit amplitudes, that is, the
spoofing task was conjectured to be hard asymptotically.

Full-amplitude simulations.—Full-amplitude simulation
of quantum circuits is challenging due to the high space
complexity induced by storing and evolving the full-state
vector. The big-batch method offers an alternative method
to compute amplitudes of all 2" bitstrings by enumerating
2™ configurations for closed qubits; for each of them, we
compute Py (s;;s,) using the big-batch method. In other
words, we compute 7, batches of amplitudes for generating
all elements of the state vector sequentially. The benefits of
the method are twofold. First, it avoids storing the state
vector and hence enjoys a small space complexity; second,
by exploiting structures using the big-batch tensor network
method, the time complexity could be heavily reduced. To
demonstrate its performance, we first compute the exact
full amplitudes for the Sycamore circuit with n =43
qubits, m = 14 cycles, and the EFGH sequence. In [1],
to accomplish this task the Jiilich supercomputer with 100
000 cores and 250 terabytes memory has been used. In our
simulations, we separate the 43 qubits into n; = 14 closed
qubits and n, =29 open qubits and enumerate all 2™
configurations s;. For each configuration, we compute
Py(sy;s,) using the big-batch tensor network method.
The overall computation was performed using a single
NVIDIA V100S GPU in 12 hours. We note here that the
computational complexity of the full-amplitude computa-
tion based on the big-batch tensor network method
increases very fast with the circuit depth, while the time
complexity of the Schrédinger method is linear in the
circuit depth. To further demonstrate the ability of the
proposed method, we computed the exact full amplitudes
for the Sycamore circuit with n =50 qubits, m = 14
cycles, and the EFGH sequence. We separate the 50 qubits
into n; = 22 closed qubits and n, = 28 open qubits. The
space complexity of computing a batch of probabilities is
2%0; the time complexity is 5.82 x 10'°. The histogram of
all 2°% probabilities is shown in the righthand side of Fig. 2,
which verifies that the histogram follows perfectly the
Porter-Thomas distribution. The whole computation was
performed on a small computational cluster with 100 GPUs
using about 10 days. We remark that the previous record of
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the largest full-amplitude simulation of quantum circuits
has 49 qubits, computed on the Sunway TaihuLight super-
computer [11]. We also remark that the proposed exact full-
amplitude method can be adapted straightforwardly to
obtain a noisy state vector with a target fidelity f, where
the computational cost can be reduced by the factor of 1/f.

Discussions.—We have presented a tensor network
method for computing a large number of correlated bit-
string amplitudes and probabilities for quantum circuits.
The method explores a specified subspace of the output
probability distribution and can be extended to compute the
full-state vector. We have demonstrated the performance of
the proposed approaches using Google’s Sycamore circuits,
where we obtained 2 x 10° correlated bitstring probabilities
for the supremacy circuits with n = 53 qubits and m = 20
cycles, and obtained the full-state vector for the simplifiable
circuits with n = 50 qubits and m = 14 cycles, with a small
GPU cluster.

Our tensor-network algorithms have several advantages
over Google’s hardware sampling of the Sycamore circuits,
including the exact computation of amplitudes and com-
puting conditional probabilities Py (s,|s;) and sample from
the distribution accordingly, which is hard for quantum
hardware. At the same time, our experiments also reflect
that Google’s hardware has several advantages over our
algorithm. The most significant one is that Google’s
hardware is much faster, while our algorithm has expo-
nential complexity and hence is not scalable to both depth
and qubit number. Although noisy, the samples generated
by Google are not correlated to each other. In this work, we
generated correlated samples that belong to a subspace of
the target output distribution.

We note here that the big-head algorithm is not the
only method to achieve the (correlated) big-batch approach.
Other methods e.g., Cotengra [13], can also be used to
obtain a big batch of amplitudes. Moreover, we note a
recent extension [28] of the big-head method that allows
sampling 1 x 10° uncorrelated bitstrings from the Syca-
more circuits with n = 53 qubits and m = 20 cycles.

Although we have focused on the simulation of Google’s
Sycamore circuits, our algorithm is generally designed. The
big-head shape and bottleneck structure are general phe-
nomenons existing in many tensor networks. The proposed
algorithm can be used straightforwardly for simulating and
verifying existing and near-future noisy intermediate-scale
quantum circuits. We hope the proposed algorithm could
inspire more research to use tensor networks as a bridge
to combine classical computations and noisy intermediate-
scale quantum computations for solving challenging prob-
lems in the real world.

We thank Xun Gao, Jinguo Liu, Dingshun Lv, Yibo
Yang, and Lei Wang for helpful discussions. We are
grateful to Haijun Liao and Lei Wang for offering A100
GPUs. Part of the computation was carried out at the
HPC Cluster of ITP, CAS. P.Z. is supported by Key

Research Program of Frontier Sciences, CAS, Grant
No. QYZDB-SSW-SYS032, and Projects No. 12047503
and No. 11975294 of National Natural Science Foundation
of China. The Sycamore circuit files are downloaded from
[29]. Our code is implemented using PYTHON. The con-
traction code, together with the contraction orders, slicing
indices, and the obtained bitstrings probabilities, will be
available at [30].
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