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If the time evolution of a quantum state leads back to the initial state, a geometric phase is accumulated that
is known as the Berry phase for adiabatic evolution or as the Aharonov-Anandan (AA) phase for nonadiabatic
evolution. We evaluate these geometric phases using Floquet theory for systems in time-dependent external
fields with a focus on paths leading through a degeneracy of the eigenenergies. Contrary to expectations, the
low-frequency limits of the two phases do not always coincide. This happens as the degeneracy leads to a
slow convergence of the quantum states to adiabaticity, resulting in a nonzero finite or divergent contribution
to the AA phase. Steering the system adiabatically through a degeneracy provides control over the geometric
phase as it can cause a π shift of the Berry phase. On the other hand, we revisit an example of degeneracy
crossing proposed by AA. We find that, at suitable driving frequencies, both geometric-phase definitions give
the same result and the dynamical phase is zero due to the symmetry of time evolution about the point of
degeneracy, providing an advantageous setup for manipulation of quantum states.
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When a quantum-mechanical system undergoes a closed
circuit in parameter space, an adiabatically evolving state
may acquire a geometric phase, known as the Berry phase
[1], in addition to its dynamical phase, where the latter is
essentially the time-integrated energy. The geometric phase
is an important fundamental concept and it appears in many
fields including molecular physics [2–4], solid-state physics
[5–8], ultracold atoms [9,10], optics [11–15], and quantum
computation [16–18]. Following Berry, the geometric phase
can be evaluated from the instantaneous eigenstates by
integration of the Berry connection, without reference to
time evolution. However, since the adiabatic approximation
is not necessarily valid [19,20], one may resort to a non-
adiabatic generalization suggested by Aharonov and
Anandan (AA) [21,22]. To calculate the geometric phase,
both Berry and AA consider the total phase acquired during
the cyclic evolution and they subtract the dynamical phase,
but they apply different definitions of the latter: Berry uses
the time-integrated instantaneous eigenenergy whereas AA
use the time-integrated energy expectation value. It is
generally believed that the two geometric phases agree in
the adiabatic limit for unitary evolution [21,22], but we show
a counterexample below.
The vast majority of existing studies exclude circuits

leading through a degeneracy (crossing or touching of the
energy levels). It is worth asking what effects and appli-
cations will emerge in such a case. One example, a spin-1=2
particle driven by a slowly varying periodic magnetic field
that passes through zero, was suggested by AA [21].

Without rigorous calculation, they argued that the
system remains in an energy eigenstate (i.e., it behaves
adiabatically in our terminology) and that the AA phase has
a well-defined limit. Our analysis confirms both statements,
which is important for quantum-state manipulation, but as
we demonstrate, the second statement does not necessarily
hold in other examples involving a degeneracy.
First, we investigate a Neþ ion driven by periodic laser

fields, comparing two types of driving protocols: either
enclosing a degeneracy or passing through it. We consider
laser fields because their time-dependent electric-field vector
follows a closed curve in the plane of polarization, i.e., a
circuit in parameter space. A circularly polarized (CP)
single-color field creates a circuit encircling the degeneracy.
Using additional colors allows for more complex paths. We
employ bicircular fields, i.e., combining two circular fields
of different colors, which have recently been used for
fundamental studies and novel applications [23–32]. With
equal strengths of both colors, the field crosses zero several
times per cycle. Therefore, such a 1∶1 field steers the system
through a degeneracy if the energy eigenstates are degen-
erate at zero field strength. We demonstrate both analytically
and numerically, by introducing a numerical measure termed
adiabaticity indicator, that the evolution can be adiabatic
despite the degeneracy. However, we find a breakdown of
the equivalence between the AA phase and Berry phase in
the adiabatic limit. We also show that the passage through
the degeneracy causes a controlled π shift of the Berry phase.
In the end, we revisit AA’s spin-1=2 example, finding that,
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due to a symmetry of time evolution, the AA phase for
suitably chosen states is the same as the adiabatic Berry
phase, even in the nonadiabatic regime.
Floquet theory and geometric phase.—A systematic way

[33–35] to obtain the AA phase [36] follows from Floquet
theory, the tool to describe periodically driven quantum
matter [37–43]. According to the Floquet theorem, the time-
dependent Schrödinger equation (TDSE) i∂=∂tjΨðtÞi ¼
HðtÞjΨðtÞi with periodic Hamiltonian HðtÞ ¼ Hðtþ TÞ
has solutions jΨðtÞi ¼ e−iEFtjPðtÞi with quasienergies EF
and time-periodic states jPðtþ TÞi ¼ jPðtÞi satisfying the
Floquet equation ðH − i∂=∂tÞjPðtÞi ¼ EFjPðtÞi [44].
These solutions return exactly to the initial state, up to an
overall phase determined by the quasienergy: The total phase
accumulation in one period is −EFT. Subtracting the
dynamical phase −H̄T based on the time-averaged energy
expectation value H̄ ¼ R

T
0 hΨðtÞjHðtÞjΨðtÞidt=T, we obtain

the AA phase γA ¼ ðH̄ − EFÞT. For practical calculations,
the periodic state jPðtÞi is Fourier expanded as jPðtÞi ¼P

n e
−inωtjFni with ω ¼ 2π=T so that the Floquet states are

determined by a matrix eigenvalue equation [37,38]. The AA
phase takes the form γA ¼ 2πn̄ with n̄ ¼ P

nhFnjFnin, see
also Refs. [34,45]. We interpret this result using the photon-
channel perspective [24,46]: hFnjFni is the weight of the
contribution to the Floquet state reached by absorption of
the photon energy nω. Hence the AA phase is a measure
of the population redistribution by photon absorption or
emission.
An alternative view on geometric phases is provided by

low-frequency Floquet theory, where the quasienergy is

expanded as EF ¼ Ē þ ωEð1Þ
F þ � � � [45,47–52] with Ē ¼R

T
0 EðtÞdt=T. Here, EðtÞ is an eigenvalue of HðtÞ. Using the
dynamical phase −ĒT as in Ref. [1], we introduce a
nonadiabatic Berry phase γB ¼ ðĒ − EFÞT that includes
nonadiabaticity via EFðωÞ. The common adiabatic Berry

phase is then equal to the low-frequency limit γð0ÞB ¼
limω→0γB ¼ −2πEð1Þ

F . It is observable by measuring the
quasienergy, for example, from positions of peaks in electron
spectra from light-induced ionization [43,53]. Note that the
low-frequency limit of the AA phase can be written as
limω→0i

R 2π=ω
0 hPðtÞj∂tjPðtÞidt, which becomes the adia-

batic Berry phase only when replacing the state jPðtÞi by its
low-frequency limit before carrying out the integration, i.e.,
by a possibly illicit rearrangement of limits.
Adiabaticity of time evolution.—We term an evolution

adiabatic if the state jΨðtÞi always remains close to an
instantaneous eigenstate jjðtÞi of the Hamiltonian HðtÞ,
i.e., the time-dependent fidelity F jðtÞ ¼ jhjðtÞjΨðtÞij2
satisfies mintF jðtÞ ≈ 1. To quantify the adiabaticity of
any numerical wave function, we introduce the adiabaticity
indicator F ¼ maxjmintF jðtÞ, where the maximum over j
selects the closest eigenstate. Values F ≈ 1 indicate that
jΨðtÞi is always close to this eigenstate.

In the following, we discuss adiabatic motion with
passages through degeneracies, cf. Ref. [54]. The evolving

state is expanded as jΨðtÞi ¼ P
l alðtÞe−i

R
t

0
ElðτÞdτjlðtÞi

with eigenstates jli chosen such that hlj_li ¼ 0 and energy
eigenvalues El. The evolution is adiabatic if the change of
the coefficient am,

ΔamðtÞ ¼ −
X
l≠m

Z
t

0

alðτÞhmj_lieifðτÞdτ; ð1Þ

remains small [55,56], where fðτÞ ¼ R
τ
0 Emlðτ0Þdτ0 and

Eml ¼ Em − El. The exponential oscillates rapidly except
near the saddle points t0 satisfying f0ðt0Þ ¼ Emlðt0Þ ¼ 0
[57,58]. These are the instants when the system crosses the
degeneracy. The prefactor alðτÞhmj_li varies slowly com-
pared to the exponential. It is therefore treated as constant.
The integral is dominated by the regions around the saddle
points, so we expand fðτÞ ¼ fðt0Þ þ f0ðt0Þðτ − t0Þ þ � � �.
Close to t0, we also exploit EmlðtÞ ∝ ½ωðt − t0Þ�N with
positive integer N. (In the examples below, we have N ¼ 2
in Neþ due to the quadratic Stark shift and N ¼ 1 for the
spin-1=2 particle.) Hence, the first nonzero derivative of f
is fðNþ1Þðt0Þ ∝ ωN . Keeping the two lowest contributing
orders, we have fðτÞ ¼ fðt0Þ þ αωNðτ − t0ÞNþ1 with a
constant α. Substituting s ¼ ðτ − t0ÞωN=ðNþ1Þ, the contri-
bution of one saddle point to the integral in Eq. (1) is

alðt0Þhmj_lieifðt0Þ
Z

∞

−∞
eiαs

Nþ1

ω− N
Nþ1ds ∝ ω

1
Nþ1; ð2Þ

where hmj_li ∝ ω is used. Thus, at ω → 0, we find
Δam → 0 and the evolution converges to adiabaticity
despite the passage through the degeneracy and irrespective
of the value of N. However, our analysis indicates that
adiabaticity is approached slower for larger N.
Thus, for Floquet states passing through degeneracies,

the nonadiabatic admixture jΨnaðtÞi to the eigenstate with
eigenvalue E behaves as hΨnaðtÞjΨnaðtÞi ∝ ω2=ðNþ1Þ if we
ignore any additional substructure due to multiphoton
resonances. This leads to H̄ − Ē ∝ ω2=ðNþ1Þ. Together with
EF ¼ Ē þ ωEð1Þ

F þ � � � and γA ¼ ðH̄ − EFÞ2πω−1, we find

γA − γð0ÞB ∝ ω−1þ½2=ðNþ1Þ�. The striking conclusion is that
the AA phase differs from the Berry phase in the adiabatic
limit. It diverges at ω → 0 for N ≥ 2.
Neþ ion in a light field.—This set of examples is

motivated by the experimental feasibility of preparing
rare-gas ions in one of their degenerate ring-current states
[59,60] and by the possibility to lift this degeneracy by an
external field. We treat a single active electron in an
effective potential [61] and we restrict the analysis to the
2p� states with magnetic quantum numbers �1 and the 2s
state [62–64]. The bicircular electric field composed of
frequencies ω and 2ω is [31]
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EðtÞ ¼ E1½cosðωtÞêx þ sinðωtÞêy�
þ E2½cosð2ωtÞêx − sinð2ωtÞêy�: ð3Þ

A single-color CP field is a special case with E2 ¼ 0. The
time-dependent Hamiltonian reads HðtÞ ¼ H0 þ r ·EðtÞ.
In one optical cycle, the field follows a closed circuit in the
parameter space given by the Ex-Ey-plane, see Fig. 1(a),
which shows also the adiabatic eigenenergies for the 2p
states as a function of the field. One of the orbitals tends to
spatially align along the field (labeled pk), exhibiting a
parabolic energy surface, whereas the other one tends to
align perpendicularly (labeled p⊥) with flat energy surface
[62]. The degeneracy at E ¼ 0 is reminiscent of a Renner-
Teller level touching, which shows no adiabatic Berry
phase when encircled by an adiabatic path [65]. In the
Floquet calculation, we expand jFni ¼

P
j cnjjϕji, where

jϕji are the field-free states ðj ¼ p−; s; pþÞ. Field-induced
transitions obey angular-momentum conservation rules.
The possible photon channels from 2p− and 2s as initial
states are illustrated in Fig. 1(b). A CP field permits only
few channels, indicated by the thick arrows.
We first consider a CP driving field. The numerically

calculated AA phases γA for the Floquet states are pre-
sented in Fig. 2(a) as a function of the dimensionless
parameter N ¼ 2D2E2

0=ðωΔEÞ, where E2
0 ¼ E2

1 þ E2
2,

ΔE ¼ 0.8509 a:u: is the gap between the field-free 2p

and 2s energies, and D ¼ hϕp�jxjϕsi ¼ −0.3513 a:u: is
the transition dipole. The AA phases for the two 2p states
have opposite signs and vary continuously from zero at
small N to �2π at N → ∞ [66]. It is intuitive that γA
vanishes at large frequencies as there is no time (T → 0) to
accumulate phase. To understand the low-frequency limit,
we plot the adiabaticity indicator F for p-type states in
Fig. 2(a). It quantifies the similarity of the Floquet state to
the instantaneous energy eigenstates,

jpkðtÞi ∝
�
e2iωt;

eiωtð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2 þ 8D2E2

0

p
− ΔEÞ

2DE0

; 1

�
T

ð4Þ

and jp⊥ðtÞi ∝ ð−e2iωt; 0; 1ÞT, where the three components
refer to the basis given by the field-free states p−, s, pþ.
The adiabaticity indicator converges to 1 at low frequency
(N → ∞), indicating that the evolution becomes adiabatic.
Next, we derive the value of the AA phase assuming
F ¼ 1. From Eq. (4), we see jhϕp−

jpkij2 ¼ jhϕpþjpkij2 ¼
ð1 − jhϕsjpkij2Þ=2. Hence, when the field-free p− state is
turned into the state jpki by the presence of the external
field [see upper panel of Fig. 1(b)], the mean number of
absorbed quanta ω for the transitions to s and pþ is n̄ ¼ 1.
Inserting into γA ¼ 2πn̄ gives γA ¼ 2π, in agreement with
the numerical finding at low frequency. In analogy, one
finds −2π for the other p-type state. At intermediateN , the
system deviates from adiabaticity, resulting in nontrivial
values of γA. For the 2s state, the transitions from s to p�
via absorbing or emitting photons are symmetric, so that
n̄ ¼ 0 and γA ¼ 0. Apparently, symmetry breaking of the
photon channels for the ring-current initial states causes
nonzero geometric phases. A similar conclusion drawn for
pseudorotating molecules [67] was that the nuclear ring
currents allowed by a degeneracy play a role in the nonzero
geometric phase. The CP field [red curve in Fig. 1(a)]
drives the system around the degeneracy. With this driving,
the adiabatic limit of the AA phase equals the adiabatic
Berry phase obtained by integrating the Berry connection.
As Fig. 2(b) shows, the quasienergies EF of the p states

converge to the time-averaged instantaneous eigenenergy Ē
at N → ∞. A fit of the asymptotic behavior reveals that
Ē − EF ∝ ω2 (modω). This means that the Berry phase γB ¼
ðĒ − EFÞT vanishes in the low-frequency limit (up to integer
multiples of 2π). Similarly, H̄ − EF behaves as ω2 (mod ω),
implying that the AA phase approaches zero (mod 2π).
A bicircular field permits more photon channels

[Fig. 1(b)] and multiphoton resonances appear. Figure 3
shows results for E1∶E2 ¼ 1∶1. Three times per cycle, this
bicircular field [yellow curve in Fig. 1(a)] passes through
zero and thus drives the system through the degeneracy.
The adiabaticity indicator F in Fig. 3(a) shows sharp
drops at the multiphoton resonances, implying highly
nonadiabatic evolution. Nevertheless, at off-resonance
low frequencies, F approaches unity. For one such case,

FIG. 1. (a) Energy surfaces of the 2p states for Neþ in an
electric field and paths of the electric field in the parameter space
for CP (red) and 1∶1 bicircular (yellow) fields. (b) Illustration of
the possible transitions in the bicircular field.

(a) (b)

FIG. 2. Results for a CP field with intensity 5 × 1014 W=cm2.
(a) AA phases γA and adiabaticity indicator F for p-type states.
(b) Energy curves. jp−; 0i denotes a solution for jPðtÞi that
resembles the p− state at the smallest considered N , while
jp−; ni denotes a solution with quasienergy differing by −nω.
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the time-dependent fidelity is shown in Fig. 3(b). It stays
close to unity despite noticeable oscillations.
In the following, we focus on the off-resonance geo-

metric phases of p states. (Those for the s state are zero).
We choose representative off-resonance points and plot
the corresponding phases γA and γB, shifted by integer
multiples of 2π into the interval ½−π; π�, see Fig. 3(c). Here,
the astounding anomalous behavior expected from the
passage through the degeneracy is found. Unlike the result
in Fig. 2(a), the AA phase does not have an adiabatic limit,
although the time evolution becomes adiabatic.
Integration of the Berry connection for the instantaneous

eigenstate jp⊥ðtÞi ∝ ð−e−iωt; 0; 1ÞT yields π (mod 2π), in
agreement with γB tending to π in Fig. 3(c). Fitting the
asymptotic behavior of the energies at ω → 0 yields
Ē − EF ≈ 0.5ω and it confirms the analytical expectation
H̄ − EF ∝ ω2=3. Indeed, both energy differences converge
to zero, but with different speeds. When computing the
geometric phases as γA ¼ ðH̄ − EFÞT and γB ¼ ðĒ − EFÞT,
the energies are multiplied with a diverging factor T ¼
2π=ω → ∞. Thus, γB converges to the finite value π, while
jH̄ − EFj does not decrease fast enough to let γA converge.
γA scales as ω−1=3 as expected.
A bicircular field with E1∶E2 ≠ 1∶1 creates multiphoton

resonances, too, but the field does not cross zero. In this

case, integration of the Berry connection gives the adiabatic
Berry phase 2π and the AA phase varies from 0 to (integer
multiple of)�2π when selecting off-resonance frequencies,
similar as in Fig. 2(a).
The adiabatic Berry phase π for the 1∶1 bicircular field

can be understood as follows. When the field passes zero,
its direction suddenly reverses, while the aligned orbital
must evolve continuously. After one cycle with three zero
crossings, the field returns to its initial direction, whereas,
relative to the field, the antisymmetric p orbital has
reversed 3 times and thus gained the phase 3π. Hence,
passage through the degeneracy offers control of the
geometric phase. Figure 3(d) illustrates this for an example
(see also the Supplemental Material [68], movie). Here, the
p orbital gains a Berry phase of about 0.8π within one
period. Because of nonadiabaticity, this value is not exactly
π. More generally, a 1∶1 bicircular field with frequencies ω
and ðN − 1Þω has N zero crossings [28], implying an
adiabatic Berry phase of Nπ.
Spin-1=2 particle in a magnetic field.—Since AA and

Berry phases may differ in the adiabatic limit for a circuit
that crosses a degeneracy, it is important to reexamine AA’s
example [21] of a spin-1=2 particle in a magnetic field with
a zero crossing. AA assumed a well-defined adiabatic limit
for their phase. The Hamiltonian isHðtÞ ¼ B · σ=2with the
Pauli vector σ. The time-varying magnetic field reads

BðtÞ ¼ B0êz þ B0½cosðωBtÞêz þ sinðωBtÞêx�: ð5Þ

An aligned spin following the field direction cannot
suddenly reverse when the field passes zero (degeneracy
of the eigenstates), see Fig. 4(a). Thus, the system is
expected to return to the initial state only after two rotations
of the field [21]. We therefore choose the Floquet frequency
ω ¼ ωB=2. For both instantaneous eigenstates ½cosðωt=2Þ;
sinðωt=2Þ�T and ½− sinðωt=2Þ; cosðωt=2Þ�T, integration of
the Berry connection yields π.
The adiabaticity indicator F for the Floquet states,

presented as a function of N B ¼ B0=ωB in Fig. 4(b), is

(a)

(c) (d)

(b)

FIG. 3. Results for a 1∶1 bicircular field with total intensity
5 × 1014 W=cm2. (a) Adiabaticity indicator for p-type states.
(b) Time-dependent fidelity Fp⊥ðtÞ ¼ jhp⊥ðtÞjΨðtÞij2 for N ¼
19.6 (see red cross in (a)). (c) AA phase γA and Berry phase γB of
p states at off-resonance frequencies. Gray curves serve as a
guide to the eye. (d) Evolution of the pk-like Floquet orbital at
N ¼ 1.7. The colors represent the position-dependent phase after
subtracting the dynamical phase −

R
t
0 EðτÞdτ. The change of this

phase over one period gives the Berry phase γB.

(a) (b)

FIG. 4. (a) Illustration of the spin-1=2 state during one rotation
of the magnetic field in the limit ω → 0. Thick arrows indicate the
spin direction. The colors represent the dynamical phase. See also
the Supplemental Material [68], movie. (b) AA phase γA and
Berry phase γB for the superpositions; adiabaticity indicatorF for
Floquet states and superpositions.

PHYSICAL REVIEW LETTERS 128, 030401 (2022)

030401-4



below 0.5, i.e., the Floquet states differ strongly from the
adiabatic states. Yet, we find that at certain discrete
frequencies, the two Floquet states have the same quasie-
nergy and one can superpose them with equal weights such
that the superpositions haveF ≈ 1, i.e., their time evolution
is nearly adiabatic [Fig. 4(b)]. For the superpositions,
we obtain the geometric phases γA ¼ γB ¼ π, surprisingly
without any frequency dependence, see Fig. 4(b). This
confirms AA’s conclusion. Moreover, we can explain that
γA ¼ γB arises in this special example because the two
energies used for the dynamical phase by Berry and AA
are equal: Ē ¼ H̄ ¼ 0 due to the antisymmetry of the spin
dynamics about the degeneracy. The accumulated dynami-
cal phase after one period is always zero, see Fig. 4(a),
which is significant for the implementation of geometric
quantum gates.
Conclusion.—Our evaluation of geometric phases for

cyclic states passing through a degeneracy reveals both
surprises and benefits. Although the Aharonov-Anandan
phase often agrees with the adiabatic Berry phase at low
frequencies, we have presented a counterexample where
they differ although the time evolution is evidently adia-
batic. The discrepancy arises because the two definitions
employ energies that approach the same low-frequency
limit with different speeds. We confirm that the Berry phase
affects the low-frequency quasienergies, i.e., observable
properties of driven systems. In view of applications in
quantum information [17,18] or coherent control of quan-
tum states [69,70], it is of interest that our study suggests
convenient control of geometric phases by steering a
system through degeneracies.
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[29] Á. Jiménez-Galán, N. Zhavoronkov, D. Ayuso, F. Morales,
S. Patchkovskii, M. Schloz, E. Pisanty, O. Smirnova, and M.
Ivanov, Control of attosecond light polarization in two-color
bicircular fields, Phys. Rev. A 97, 023409 (2018).

[30] O. Neufeld, D. Podolsky, and O. Cohen, Floquet group
theory and its application to selection rules in harmonic
generation, Nat. Commun. 10, 405 (2019).

[31] S. Odžak, E. Hasović, and D. B. Milošević, High-order
harmonic generation in polyatomic molecules induced by a
bicircular laser field, Phys. Rev. A 94, 033419 (2016).

[32] S. Eckart, K. Fehre, N. Eicke, A. Hartung, J. Rist, D.
Trabert, N. Strenger, A. Pier, L. P. H. Schmidt, T. Jahnke,
M. S. Schöffler, M. Lein, M. Kunitski, and R. Dörner, Direct
Experimental Access to the Nonadiabatic Initial Momentum
Offset upon Tunnel Ionization, Phys. Rev. Lett. 121, 163202
(2018).

[33] D. J. Moore and G. E. Stedman, Non-adiabatic Berry phase
for periodic Hamiltonians, J. Phys. A 23, 2049 (1990).

[34] D. J. Moore, The calculation of nonadiabatic Berry phases,
Phys. Rep. 210, 1 (1991).

[35] J. Liu, B. Hu, and B. Li, Nonadiabatic Geometric Phase and
Hannay Angle: A Squeezed State Approach, Phys. Rev.
Lett. 81, 1749 (1998).

[36] References [33,34] use the term “non-adiabatic Berry
phase” for the AA phase. We reserve the term “Berry
phase” for values obtained with Berry’s definition of the
dynamical phase.

[37] J. H. Shirley, Solution of the Schrödinger equation with a
Hamiltonian periodic in time, Phys. Rev. 138, B979 (1965).

[38] C. J. Joachain, N. J. Kylstra, and R. M. Potvliege, Atoms
in Intense Laser Fields (Cambridge university Press,
New York, 2012), pp. 141–158.

[39] L. Medišauskas, U. Saalmann, and J. M. Rost, Floquet
Hamiltonian approach for dynamics in short and intense
laser pulses, J. Phys. B 52, 015602 (2019).

[40] R. Moessner and S. L. Sondhi, Equilibration and order in
quantum Floquet matter, Nat. Phys. 13, 424 (2017).

[41] H. Hübener, M. A. Sentef, U. De Giovannini, A. F. Kemper,
and A. Rubio, Creating stable Floquet-Weyl semimetals by
laser-driving of 3D Dirac materials, Nat. Commun. 8, 13940
(2017).

[42] T. Oka and H. Aoki, Photovoltaic Hall effect in graphene,
Phys. Rev. B 79, 081406(R) (2009).

[43] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik,
Observation of Floquet-Bloch states on the surface of a
topological insulator, Science 342, 453 (2013).

[44] We use atomic units throughout this Letter.
[45] A. Russomanno, S. Pugnetti, V. Brosco, and R. Fazio,

Floquet theory of Cooper pair pumping, Phys. Rev. B 83,
214508 (2011).

[46] L. Li, P. Lan, L. He, X. Zhu, J. Chen, and P. Lu, Scaling Law
of High Harmonic Generation in the Framework of Photon
Channels, Phys. Rev. Lett. 120, 223203 (2018).

[47] M. Pont, R. Shakeshaft, and R. M. Potvliege, Low-
frequency theory of multiphoton ionization, Phys. Rev. A
42, 6969 (1990).

[48] M. Pont, R. M. Potvliege, R. Shakeshaft, and Z.-j. Teng,
Low-frequency theory of multiphoton ionization. II.
General formulation and further results for ionization of
H(1s), Phys. Rev. A 45, 8235 (1992).

[49] H. Martiskainen and N. Moiseyev, Perturbation theory for
quasienergy floquet solutions in the low-frequency regime
of the oscillating electric field, Phys. Rev. A 91, 023416
(2015).

[50] H. Martiskainen and N. Moiseyev, Adiabatic perturbation
theory for atoms and molecules in the low-frequency
regime, J. Chem. Phys. 147, 224101 (2017).

[51] A. Russomanno and G. E. Santoro, Floquet resonances
close to the adiabatic limit and the effect of dissipation,
J. Stat. Mech. (2017) 103104.

[52] M. Rodriguez-Vega, M. Lentz, and B. Seradjeh, Floquet
perturbation theory: Formalism and application to low-
frequency limit, New J. Phys. 20, 093022 (2018).

[53] M. Lein, E. K. U. Gross, and V. Engel, Discrete peaks in
above-threshold double-ionization spectra, Phys. Rev. A 64,
023406 (2001).

[54] M. Born and V. Fock, Beweis des Adiabatensatzes, Z. Phys.
51, 165 (1928).

[55] D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh, Suffi-
ciency Criterion for the Validity of the Adiabatic Approxi-
mation, Phys. Rev. Lett. 98, 150402 (2007).

[56] M. H. S. Amin, Consistency of the Adiabatic Theorem,
Phys. Rev. Lett. 102, 220401 (2009).

[57] N. Bleistein, Uniform asymptotic expansions of integrals
with stationary point near algebraic singularity, Commun.
Pure Appl. Math. 19, 353 (1966).

[58] M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, Anne L’Huillier,
and P. B. Corkum, Theory of high-harmonic generation
by low-frequency laser fields, Phys. Rev. A 49, 2117
(1994).

[59] S. Eckart, M. Kunitski, M. Richter, A. Hartung, J. Rist,
F. Trinter, K. Fehre, N. Schlott, K. Henrichs, L. Ph. H.
Schmidt, T. Jahnke, M. Schöffler, K. Liu, I. Barth, J.
Kaushal, F. Morales, M. Ivanov, O. Smirnova, and R.
Dörner, Ultrafast preparation and detection of ring currents
in single atoms, Nat. Phys. 14, 701 (2018).

[60] T. Herath, L. Yan, S. K. Lee, and W. Li, Strong-
Field Ionization Rate Depends on the Sign of the
Magnetic Quantum Number, Phys. Rev. Lett. 109,
043004 (2012).

[61] X. M. Tong and C. D. Lin, Empirical formula for static field
ionization rates of atoms and molecules by lasers in the
barrier-suppression regime, J. Phys. B 38, 2593 (2005).

[62] I. Barth and M. Lein, Numerical verification of the theory of
nonadiabatic tunnel ionization in strong circularly polarized
laser fields, J. Phys. B 47, 204016 (2014).

PHYSICAL REVIEW LETTERS 128, 030401 (2022)

030401-6

https://doi.org/10.1103/PhysRevLett.115.153001
https://doi.org/10.1103/PhysRevLett.115.153001
https://doi.org/10.1103/PhysRevLett.117.133902
https://doi.org/10.1103/PhysRevLett.119.203201
https://doi.org/10.1088/2040-8986/aa9673
https://doi.org/10.1103/PhysRevA.97.023409
https://doi.org/10.1038/s41467-018-07935-y
https://doi.org/10.1103/PhysRevA.94.033419
https://doi.org/10.1103/PhysRevLett.121.163202
https://doi.org/10.1103/PhysRevLett.121.163202
https://doi.org/10.1088/0305-4470/23/11/027
https://doi.org/10.1016/0370-1573(91)90089-5
https://doi.org/10.1103/PhysRevLett.81.1749
https://doi.org/10.1103/PhysRevLett.81.1749
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1088/1361-6455/aaef42
https://doi.org/10.1038/nphys4106
https://doi.org/10.1038/ncomms13940
https://doi.org/10.1038/ncomms13940
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1126/science.1239834
https://doi.org/10.1103/PhysRevB.83.214508
https://doi.org/10.1103/PhysRevB.83.214508
https://doi.org/10.1103/PhysRevLett.120.223203
https://doi.org/10.1103/PhysRevA.42.6969
https://doi.org/10.1103/PhysRevA.42.6969
https://doi.org/10.1103/PhysRevA.45.8235
https://doi.org/10.1103/PhysRevA.91.023416
https://doi.org/10.1103/PhysRevA.91.023416
https://doi.org/10.1063/1.5001866
https://doi.org/10.1088/1742-5468/aa8702
https://doi.org/10.1088/1367-2630/aade37
https://doi.org/10.1103/PhysRevA.64.023406
https://doi.org/10.1103/PhysRevA.64.023406
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1103/PhysRevLett.98.150402
https://doi.org/10.1103/PhysRevLett.102.220401
https://doi.org/10.1002/cpa.3160190403
https://doi.org/10.1002/cpa.3160190403
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1038/s41567-018-0080-5
https://doi.org/10.1103/PhysRevLett.109.043004
https://doi.org/10.1103/PhysRevLett.109.043004
https://doi.org/10.1088/0953-4075/38/15/001
https://doi.org/10.1088/0953-4075/47/20/204016


[63] X. Zhang, L. Li, X. Zhu, K. Liu, X. Liu, D. Wang, P. Lan,
I. Barth, and P. Lu, Subpetahertz helicity-modulated high-
order harmonic radiation, Phys. Rev. A 98, 023418 (2018).

[64] K. Liu, H. Ni, K. Renziehausen, J. M. Rost, and I. Barth,
Deformation of Atomic p� Orbitals in Strong Elliptically
Polarized Laser Fields: Ionization Time Drifts and Spatial
Photoelectron Separation, Phys. Rev. Lett. 121, 203201
(2018).

[65] J. W. Zwanziger and E. R. Grant, Topological phase in
molecular bound states: Application to the E ⊗ e system,
J. Chem. Phys. 87, 2954 (1987).

[66] Very small N are excluded from Figs. 2, 3 because of
avoided crossings between s and p states that we do not
discuss in the present work.

[67] R. Requist, F. Tandetzky, and E. K. U. Gross, Molecular
geometric phase from the exact electron-nuclear factoriza-
tion, Phys. Rev. A 93, 042108 (2016).

[68] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.128.030401 for animated versions of
Figs. 3(d) and 4(a).

[69] F. Vewinger, M. Heinz, B.W. Shore, and K. Bergmann,
Amplitude and phase control of a coherent superposition
of degenerate states. I. Theory, Phys. Rev. A 75, 043406
(2007).

[70] A. Karpati and Z. Kis, Adiabatic creation of coherent
superposition states via multiple intermediate states, J. Phys.
B 36, 905 (2003).

PHYSICAL REVIEW LETTERS 128, 030401 (2022)

030401-7

https://doi.org/10.1103/PhysRevA.98.023418
https://doi.org/10.1103/PhysRevLett.121.203201
https://doi.org/10.1103/PhysRevLett.121.203201
https://doi.org/10.1063/1.453083
https://doi.org/10.1103/PhysRevA.93.042108
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.030401
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.030401
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.030401
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.030401
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.030401
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.030401
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.030401
https://doi.org/10.1103/PhysRevA.75.043406
https://doi.org/10.1103/PhysRevA.75.043406
https://doi.org/10.1088/0953-4075/36/5/310
https://doi.org/10.1088/0953-4075/36/5/310

