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Very thin elastic sheets, even at zero temperature, exhibit nonlinear elastic response by virtue of their
dominant bending modes. Their behavior is even richer at finite temperature. Here, we use molecular
dynamics to study the vibrations of a thermally fluctuating two-dimensional elastic sheet with one end
clamped at its zero-temperature length. We uncover a tilted phase in which the sheet fluctuates about
a mean configuration inclined with respect to the horizontal, thus breaking reflection symmetry. We
determine the phase behavior as a function of the aspect ratio of the sheet and the temperature. We show
that tilt may be viewed as a type of transverse buckling instability induced by clamping coupled to thermal
fluctuations and develop an analytic model that predicts the tilted and untilted regions of the phase diagram.
Qualitative agreement is found with the molecular dynamics simulations. Unusual response driven by
control of purely geometric quantities like the aspect ratio, as opposed to external fields, offers a very rich
playground for two-dimensional mechanical metamaterials.
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Elastic sheets and cantilever ribbons have long been
studied in classical plate theory [1,2]. The energetic cost
of elastic stretching relative to the bending, escape into
the third dimension through height fluctuations, is con-
trolled by the dimensionless Föppl-von Kármán number
vK ∼ A=t2, where A is the area of the sheet and t is the
thickness. In the very thin limit, such as atomically thin
graphene, bending dominates and vK may be tuned by
varying purely geometric scales rather than external fields.
The mechanical behavior of thin sheets is even richer when
they are thermalized [3,4]. Instead of always crumpling,
like linear polymer chains, thermal excitations lead to a
low-temperature wrinkled flat phase, even for arbitrarily
large sheets. In the wrinkled phase, the bending rigidity and
elastic moduli become scale-dependent rather than simple
material parameters (see, e.g., Refs. [5–14]). In particular
the renormalized bending rigidity κR is strongly scale-
dependent, with an enhancement over the zero-temperature
value κ by a factor ðL=lthÞη, where L is the smallest 2D
spatial extent of the sheet, say the length L, and lth is the
length scale above which the effect of thermal fluctuations
becomes significant, with the critical exponent η being
approximately 0.8 (e.g., Refs. [9,15–19]). The crucial
length lth is given by lth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3κ2=3kBTY

p
, where Y is

the zero-temperature value of the Young’s modulus. This
almost linear enhancement allows for further geometric
tuning of the thermalized mechanical response, especially
since the room temperature thermal length scale is of order
nanometers or less for strong covalently bonded materials
such as graphene [20,21]. This is a result of both small
bending rigidity and large Young’s modulus. For soft

membranes both κ and Y are small, which means the
thermal length scale often exceeds the physical size of the
system and thermal effects are irrelevant. The combination
of thermal fluctuations and geometric control provides a
rich toolbox for generating unusual behavior.
Recently, the field has advanced considerably with the

experimental observations in Ref. [20], who studied the
deflections and thermal fluctuations of atomically thin,
10 μm wide freestanding graphene cantilevers and springs,
and found a renormalized bending rigidity at room temper-
ature of order 4000 times larger than its microscopic value
at T ¼ 0. This remarkable enhancement of the bending
rigidity is consistent with the predicted stiffening due to
thermal fluctuations alone. The predicted softening of
the in-plane Young’s modulus [10] of a graphene sheet
polymer (by a factor of roughly 25) has also been observed
experimentally [21].
The linear and nonlinear mechanical response of thin

sheets in cantilever (single-clamp) or double-clamp con-
figurations, possibly decorated with cuts or holes to
facilitate escape into the third dimension [20,22,23], is
interesting in its own right. One can also envision appli-
cations such as nanosprings, nanoscale actuators, nano-
kirigami, and highly sensitive temperature or mass sensors
[24]. To properly design and understand such devices at
room temperature, one must explore how thermal fluctua-
tions affect the mechanical properties of individual thin
sheets. Theoretically, the thermalized behavior of single-
clamped [25] and double-clamped [26] long ribbons has
been studied previously, as well as thermalized Euler
buckling of the double-clamped system [27]. Buckling
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of square and circular elastic sheets has also been
explored [14,28,29].
Here, we use molecular dynamics (MD) simulations to

study a thermal elastic sheet of zero-temperature width W0

and length L0, with the aspect ratio α ¼ W0=L0 ≥ 1,
clamped along only one edge of width W0. We find that
besides the horizontal phase where the system vibrates
about the horizontal plane, it can also exhibit a tilted phase
where the elastic sheet spontaneously tilts, i.e., oscillates
about a mean buckled configuration that is tilted with
respect to the horizontal. Since the tilt plane is equally
likely to be above or below the horizontal plane, we have in
fact a 2-state oscillator. We show the phase diagram of the
system as a function of the temperature and the aspect ratio.
Interestingly, the tilted phase only exists for a finite window
of the aspect ratio. Further, we provide a theoretical
explanation that qualitatively fits the simulation results.
As we will show more precisely later, the combination of
thermal fluctuations and clamping deforms the reference
thin sheet by a length scale proportional to ðkBT=κÞgðαÞL0,
where g is some function of the aspect ratio. This
deformation sets off a competition between in-plane
compression and out-of-plane bending, and bending is
energetically more favorable if the deformation is larger
than a length scale approximately proportional to κ=YL0.
Therefore, we expect a big thin sheet with a small κ and
large Y to buckle in our setup at a high temperature for
some aspect ratio. This is consistent with the classic
intuition that a long, solid but flexible beam is susceptible
to buckling under compression. Apart from clamping, no
external forces or fields are present in the setup, so our
finding identifies a way of controlling the states of 2D
materials by pure geometry and temperature.
We model an elastic sheet as a discrete triangular lattice

of vertices and bonds, with the elastic energy being a sum
of a stretching term and a bending term:

E ¼ ε

2

X
hiji

ðjri − rjj − aÞ2 þ κ̃

2

X
hIJi

ðn̂I − n̂JÞ2; ð1Þ

where ε is the discrete spring constant, a is the equilibrium
spring length, and κ̃ is the discrete bending modulus. The
sum hiji is over pairs of nearest-neighbor vertices, with
positions ri in 3D Euclidean space, while the sum hIJi is
over all pairs of triangular plaquettes, with unit normals n̂I ,
that share a common edge. The continuum limit of Eq. (1)
leads to a Young’s modulus Y ¼ 2ε=

ffiffiffi
3

p
, a bending rigidity

κ ¼ ffiffiffi
3

p
κ̃=2, and a Poisson ratio ν ¼ 1=3 [30–32]. For

graphene the discrete triangular lattice may be viewed as
the dual of its actual honeycomb lattice [26] with edge
length a ¼ ffiffiffi

3
p

a0, where a0 ¼ 1.42 Å is the carbon-carbon
bond length. We use graphene’s microscopic material
parameters κ¼1.2 eV [33,34] and Y¼20 eV=Å2 [35,36].
Figure 1(a) displays the zero-temperature flat configuration

of a sheet in the x-y plane, with L0 ¼ 20a ≈ 50 Å and
aspect ratio α ¼ W0=L0 ≈ 5, where the subscript 0 labels
zero-temperature quantities. We clamp the edge vertices
along one zigzag boundary indicated by the pink line in
Fig. 1(a) and tag the middle vertex on the free end (shown
in red). We find consistent results from MD simulations
using two different software packages: HOOMD-blue
[37,38] and LAMMPS [39]. After giving the free vertices
a small random out-of-plane displacement, we update their
positions with the Nosé-Hoover thermostat, in which the
system reaches a target temperature and evolves in the
constant temperature ensemble (see the Supplemental
Material for details [40]). Every simulation run consists
of 107 time steps in total, with the first 5 × 106 time steps
ensuring equilibrium.
Our system exhibits two phases depending on the aspect

ratio and the temperature: a horizontal phase where the
sheet vibrates about the horizontal z ¼ 0 plane, and a tilted
phase where it vibrates about a tilted configuration. We
show snapshots of the two phases in Figs. 1(b) and 1(c).
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FIG. 1. (a) A triangulated membrane with zero-temperature
length L0 ¼ 20a and aspect ratio α ¼ W0=L0 ≈ 5 clamped on the
back edge (colored pink). The middle vertex on the front edge is
marked with a large red dot. We label the left and right edges in
green and the centerline in gray. The snapshot was generated
using the visual molecular dynamics package [41] and rendered
using the Tachyon ray tracer [42]. (b) Snapshot of the horizontal
phase. (c) Snapshot of the tilted phase. (d) Height (measured in
the zero-temperature lattice spacing a) of the red vertex as a
function of time for 106 time steps after equilibrating for 5 × 106

time steps.
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It is revealing to plot the height h (z coordinate) of
the middle vertex of the free long edge [the red vertex
in Fig. 1(a)] for 106 time steps after equilibrating—see
Fig. 1(d). At low temperature (kT ¼ 0.1 eV), the red vertex
vibrates about z ¼ 0 (black line). At a higher temperature
(kT ¼ 0.8 eV), however, the vertex vibrates about
z ≈ 10—the upper trace (blue line). At an intermediate
temperature (kT ¼ 0.5 eV), the vertex vibrates about two
symmetric positions z ≈�7 with occasional inversions
(red line).
We quantify tilt with an order parameter ϕ≡ hjh=xji,

where h and x are coordinates of the aforementioned
vertex, and the bracket denotes an average over time and
independent runs. We plot ϕ as a function of aspect ratio α
and temperature kT in Fig. 2, where we have averaged over
five independent runs. At sufficiently high temperature and
in a moderate range of aspect ratios, the sheet is clearly
tilted; otherwise the sheet is horizontal. We do not observe
any abrupt discontinuity in Fig. 2, which suggests that the
transition between the horizontal phase and the tilted phase
is continuous. For a system with an aspect ratio in the
window for tilt, the free energy gradually changes from
having only one global minimum (horizontal phase) to
having two equal local minima (tilt up and tilt down) as
temperature increases. A further increase in temperature
will lead to the system tilting higher and staying in the tilted
state longer. A close look at a typical tilt configuration
shows that the sheet is not uniformly tilted along the width
direction. We plot the profile of the sheet in the tilted phase
in Fig. 3(a), and the two short free edges [marked in green
in Fig. 1(a)] and the parallel middle line [marked in gray in
Fig. 1(a)] in Fig. 3(b). It can be seen that the middle line has
a pronounced buckled profile, while the two free edges
have lower curvatures.
The tilted phase may be understood as a result of a

buckling instability: a macroscopically flat thermalized

membrane has a projected area smaller than its zero-
temperature area due to thermally induced microscopic
wrinkles (e.g., Refs. [10,26]). The natural reference state
for defining stresses and strains is the thermalized mem-
brane. Thus, clamping one end at its zero-temperature
width W0 exerts a stretching force along the clamped
boundary. A combination of stretching and clamped
boundaries is known to produce a region of compressive
stress in the direction transverse to stretching, leading to a
wrinkling instability in double-clamped thin sheets
[43–45]. In our case, a similar instability appears as tilting.
To develop an analytic model for tilt (see the

Supplemental Material [40] for details about the model),
we use the thermalized elastic sheet as our reference state
and choose the coordinates such that the thermalized sheet
occupies the region 0 ≤ x ≤ L0 and −W0=2 ≤ y ≤ W0=2
and is clamped at x ¼ 0. As discussed above, a thermalized
sheet is smaller than its zero-temperature counterpart, so
W0 < W0 and L0 < L0. The deformation from the reference
state is described by in-plane displacements uxðrÞ and
uyðrÞ, and an out-of-plane deflection hðrÞ. The elastic
energy of the system is [46]

E ¼
Z

d2r

�
κR
2
ð∇2hÞ2 þ μRu2ij þ

1

2
λRu2kk

�
; ð2Þ

where the strain tensor uij ¼ 1
2
½ð∂ui=∂xjÞ þ ð∂uj=∂xiÞ þ

ð∂h=∂xiÞð∂h=∂xjÞ�. Thermal fluctuations renormalize
the elastic moduli so that they become (strongly) scale-
dependent [5,7–10,47]: κRðL0Þ ∼ κðL0=lthÞη and YRðL0Þ ¼
½4μRðμR þ λRÞ=ð2μR þ λRÞ� ∼ YðL0=lthÞ−ηu , where η ≈ 0.8
and ηu ≈ 0.4. Clamping imposes a boundary condition
uxð0; yÞ ¼ 0. It also fixes the left edge to the zero-
temperature width W0 > W0, imposing stretching on the
reference state:

uy

�
0;
W0

2

�
¼ −uy

�
0;−

W0

2

�
¼ W0 −W0

2
≡ ϵ

2
W0: ð3Þ
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FIG. 2. The value of order parameter ϕ as a function of
temperature and aspect ratio α. The diagram is obtained by
analyzing the second 5 × 106 time steps and averaging over five
independent runs. White lines indicate the estimated phase
boundary by solving Δm ¼ Δc, which are described in Eqs. (5)
and (7), respectively.
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FIG. 3. A tilted membrane with kT ¼ 0.8 eV and α ¼ 5.
(a) Interpolated profile of the membrane. (b) Profile of the
two short free edges with green crosses and triangles [marked
green in Fig. 1(a)] and the parallel middle line with gray circles
[marked gray in Fig. 1(a)].
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The extension ratio ϵ ¼ ðW0 −W0Þ=W0 is approximately
given by [10]

ϵ ≈
1

8π

kBT
κ

½η−1 − η−1ðlth=L0Þη þ lnðlth=aÞ�: ð4Þ

We find it useful to double our system to the region −L0 ≤
x ≤ L0 and −W0=2 ≤ y ≤ W0=2 by reflecting it about the y
axis. The originally clamped edge is no longer on the
boundary in this doubled system, and uxð0; yÞ ¼ 0 is
automatically satisfied by symmetry. We consider a narrow
strip with length 2L0 around y ¼ 0 and call it the middle
strip, which can buckle under enough compression and is a
simple proxy for the system in our analysis. To determine
the compression Δm of the middle strip we examine the
system from its horizontal (h ¼ 0) phase in Eq. (2). The
energy functional gives the equilibrium equation for the in-
plane stress ∂iσij ¼ 0 [46].
On the left and right edges of the doubled system,

we impose the strong traction-free boundary condition
σxxð�L0; yÞ ¼ 0 and a weak boundary conditionR
σxyð�L0; yÞdy ¼ 0. On the top and bottom edges we

impose σxyðx;�W0=2Þ ¼ 0 and σyyðx;�W0=2Þ ¼
f cosðπx=2L0Þ, which models the stretching effect from
clamping on the reference state. For simplicity, we have
used a delocalized stress σyy instead of a highly localized
stress at x ¼ 0, and f is determined self-consistently by
condition Eq. (3) on the displacement. This set of boundary
conditions allows us to solve for the in-plane stress
analytically with the Airy stress function method, which
confirms that the middle strip is indeed under a compres-
sive stress σxx.
After applying the stress-strain relation, we obtain

uxxðx; 0Þ, which we integrate to obtain the compression
Δm of the middle strip at y ¼ 0. To first order in small ϵ we
find

Δm ¼ −2uxðL0; 0Þ

¼ L0αϵ

2sinh2ðπα
4
Þ
�
πα

4
cosh

�
πα

4

�
ð1þ νRÞ

− sinh

�
πα

4

�
ð1 − νRÞ

�
; ð5Þ

where νR ¼ λR=ð2μR þ λRÞ is the renormalized Poisson
ratio, which would be −1=3 for an infinitely sized,
freestanding thermalized sheet [9,47]. We observe that
Δm crosses from negative to positive at some threshold
aspect ratio (Fig. 4). This is due to two competing effects.
The tensile stress σyy from clamping tends to extend the
middle strip because of an overall negative Poisson ratio of
the reference state. The compressive stress σxx, in contrast,
tends to compress the middle strip. Our calculation shows

that the former dominates for small aspect ratio, extending
the middle strip (Δm < 0), and the latter dominates for
higher aspect ratios, allowing buckling for a window of
aspect ratios. Here, we have ignored all effects of thermal
fluctuation besides renormalization of the elastic moduli.
A finite element calculation in the same spirit using the
FENICS package [48] and a comparison between MD
simulation, theory, and finite element calculation is pre-
sented in the Supplemental Material [40].
To estimate the critical compression Δc above which the

sheet buckles, we use a one-dimensional model for
the middle strip. Dropping the y derivatives and uy in
Eq. (2), we have an energy density functional E½ux; h� ¼
ðκR=2Þ

R
dxðd2h=dx2Þ2 þ ½YR=2ð1 − ν2RÞ�

R
dx½ðdux=dxÞþ

1
2
ðdh=dxÞ2�2 with the antiperiodic boundary condition on

the displacement uxð−L0Þ ¼ −uxðL0Þ ¼ Δ=2. Integrating
out the displacement field gives an effective energy density
in terms of h alone [40]:

Eeff ½h� ¼− log

�Z
Duxe−E½ux;h�

�

¼ κR
2

Z
dx

�
d2h
dx2

�
2

þ YR

4L0ð1− ν2RÞ
�
Δ−

1

2

Z
L0

−L0
dx

�
dh
dx

�
2
�
2

¼ κR
2

Z
dx

�
d2h
dx2

�
2

−
YR

2ð1− ν2RÞ
Δ
2L0

Z
dx

�
dh
dx

�
2

þ YR

2ð1− ν2RÞ
1

8L0

Z Z
dxdx0

�
dh
dx

�
2
�
dh
dx0

�
2

; ð6Þ

where we drop a constant term independent of h from
the second line. This can be generalized to a circular
plate [29]. We use a mean field variational function
hðxÞ ¼ H cos ðπx=2L0Þ, where H serves as the buckling
order parameter. If minimization of Eq. (6) requiresH ¼ 0,
the strip will stay in the plane; if it requires H ≠ 0, then the
strip will buckle out of the plane. It thus yields a critical
compression:

1 3 5 7 9
-0.02

-0.01

0

0.01

FIG. 4. Compression of middle strip Δm=L0 as a function of
aspect ratio α using Eq. (5), with ϵ ¼ 0.05 and two different
renormalized Poisson ratios.
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Δc ¼
π2

2L0
κRð1 − ν2RÞ

YR
: ð7Þ

Setting Δm ¼ Δc, a combination of Eqs. (4), (5), and (7),
gives the phase boundary between the horizontal and tilted
phases and is shown with thick white lines in Fig. 2. The
result shows that the tilted phase exists for a finite window
of aspect ratios, consistent with our MD simulations. Here,
we have used a constant νR ¼ −1=3, which is the universal
Poisson ratio for an infinitely sized thermal sheet [9,47].
Finite-size effects and the suppression of thermal fluctua-
tions from clamping may shift νR to a less negative value
and even introduce spatial and strain dependence. As can
be seen from Fig. 4, a less negative Poisson ratio such as
νR ¼ −1=5 would reduce the effect of the tensile σyy and
favor compression of the middle strip. Our study shows that
the compressive stress induced by thermal fluctuation and
clamped boundary can overcome a negative Poisson’s
effect and lead to buckling.
The observation that tilt is only present for kT ≳ 0.4 eV

in MD simulations is a nonuniversal result of the small
system size, and we expect that larger systems favor
tilt. Equation (5) gives Δm ∼ L0, and Eq. (7) gives
Δc ∼ L−1þηþηu

0 ≈ L0.2
0 . The amount of compression of the

middle strip therefore grows much faster than the critical
compression required for tilting as system size increases.
A comparison of the phase diagrams of L0 ¼ 20a and
L0 ¼ 30a suggests that tilt is more easily observed for
larger systems [40]. We also observe tilt with L0 ¼ 60a,
α ¼ 5 at kBT ¼ 0.1 eV, with an order parameter ϕ ≈ 0.47.
We expect a much lower tilt temperature for real experi-
ments with larger samples. We hope our work will
stimulate experiments that exploit geometric control of
mechanical behavior of thermalized 2D metamaterials or
other realizations of thermalized elastic sheets.
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