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We present an analytical derivation of the volume fractions for random close packing (RCP) in both
d ¼ 3 and d ¼ 2, based on the same methodology. Using suitably modified nearest neighbor statistics for
hard spheres, we obtain ϕRCP ¼ 0.658 96 in d ¼ 3 and ϕRCP ¼ 0.886 48 in d ¼ 2. These values are well
within the interval of values reported in the literature using different methods (experiments and numerical
simulations) and protocols. This statistical derivation suggests some considerations related to the nature of
RCP: (i) RCP corresponds to the onset of mechanical rigidity where the finite shear modulus emerges,
(ii) the onset of mechanical rigidity marks the maximally random jammed state and dictates ϕRCP via the
coordination number z, (iii) disordered packings with ϕ > ϕRCP are possible at the expense of creating
some order, and z ¼ 12 at the fcc limit acts as a boundary condition.
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The problem of the closest packing of equal spheres was
conjectured by Kepler for ordered assemblies of spheres.
Gauss proved that the highest packing fraction that can
be achieved by any packing of equal spheres is ϕ ¼
ðπ=3 ffiffiffi

2
p Þ ¼ 0.740 48, which corresponds to the face cen-

tered cubic (fcc) arrangement of spheres with coordination
number z ¼ 12. The formal proof of Kepler’s conjecture
was provided by Hales in more recent times [1–3]. An open
central problem in contemporary physics and mathematics
is the determination of the highest packing fraction occu-
pied by spheres in disordered assemblies, i.e., the so-called
random close packing (RCP) problem. This problem is
crucial for our understanding of amorphous materials [4,5].
A visionary experiment by Bernal and Mason in 1960 [6]
showed that random packings of spheres in d ¼ 3 have a
volume fraction around ϕRCP ≈ 0.64 and a coordination
number z ¼ 6. This crucial observation was already under-
stood by Bernal as a necessary consequence of mechanical
stability, since it was well known, since Maxwell, that a
lattice with only central-force interactions is rigid only if
z ≥ 6, regardless of the lattice structure. Building on this
intuition, Bernal speculated that tetrahedral arrangements
of spheres must be dominant in RCP, since a given sphere
needs to touch three nearest neighbors on a plane in order to
be mechanically stable along the direction orthogonal to the
plane. Bernal’s idea prompted Finney and Gotoh [7] to
produce a heuristic analytical estimate of ϕRCP in d ¼ 3
based on the local tetrahedral packing geometry. Many
other approaches, in particular using computer simulations,
are available [8].
In d ¼ 3 the analytical approaches to the RCP problem

are very few: besides the result of Finney and Gotoh we
should mention the analytical estimate obtained in Ref. [9]
using the Edwards statistical mechanics of a restricted

volume ensemble, the granocentric model of Ref. [10]
based on coordination number and local available space,
and the liquidlike approach based on metastability
of Ref. [11].
In d ¼ 2, a number of analytical estimates are available

which are based on heuristic geometric considerations [12–
15], while in high dimensional space theoretical descrip-
tions provided by replica-symmetry breaking approaches
become exact in the limit d → ∞ [16].
In general, an unambiguous determination of ϕRCP is

plagued by at least two aspects: (i) ϕRCP depends largely on
the protocol used to form the packing, and (ii) it is difficult
to provide a clear-cut definition of “randomness” of the
packing. The latter point has been duly emphasized in [17],
where authors proposed that RCP is actually a maximally
random jammed state corresponding to some minimum
value of a structural order parameter. Another possible
solution to this problem has been suggested in [11] with the
idea that RCP is a singularity in a set of metastable
branches of the pressure, which echoes the high-dimen-
sional findings of the replica method [16]. Regarding the
protocol dependence, this is manifested in the relatively
broad range of ϕRCP that have been reported in the
literature, e.g., ϕRCP ¼ 0.60 − 0.69 in d ¼ 3 [8], and
ϕRCP ¼ 0.81 − 0.89 in d ¼ 2 [15].
A simple theory that is able to predict ϕRCP in both d ¼ 2

and d ¼ 3 has been missing due to the problem of
analytically dealing with strong particle correlations (due
to many-body excluded-volume interactions), which pre-
clude the development of a simple analytical theory.
Here, we remedy to this situation and present a simple,

analytical theory of RCP which, within the same frame-
work, is able to predict sensible values for ϕRCP in both
d ¼ 2 and d ¼ 3. The approach and the derivation
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emphasize the role of mechanical stability and the emer-
gence of rigidity in determining the RCP features.
We start with an operative definition of RCP based on

mechanical stability. The elasticity problem of random
packings in d ¼ 2 and d ¼ 3 was solved exactly in
Ref. [18], and provides an accurate closed-form expression
for the shear modulus:

G ¼ αðdÞρκσ2ðz − 2dÞ; ð1Þ

where αðd ¼ 3Þ ¼ ð1=30Þ and αðd ¼ 2Þ ¼ ð1=18Þ, ρ ¼
ðN=VÞ is the particle density (obviously, ρ ¼ ðN=SÞ in
d ¼ 2), and κ is the spring constant of the nearest-neighbor
interaction, while σ is the particle diameter. Equation (1)
was shown in Ref. [18] to be in excellent parameter-free
agreement with simulations data of jammed packings
from Ref. [19].
The negative contribution ∝ −2d arises from nonaffine

motions of the particles under an applied shear strain [18].
These motions arise in order to maintain the mechanical
equilibrium on each particle, and represent a negative
contribution to the free energy of deformation of the
system. The dependence on space dimension d is due to
the fact that nonaffine relaxations involve all the degrees of
freedom of the system, which are dN. The positive
contribution is the affine Born-Huang contribution which
is instead proportional to the total number of interparticle
contacts ðzN=2Þ, hence the dependence on z.
Clearly, based on (1), mechanical stability arises at z ¼

2d where the particle contacts become able to balance the
energy cost of nonaffine relaxations. For z < 2d the system
is not rigid, hence it is still able to undergo substantial
rearrangements and to find denser configurations at larger
ϕ. At z > 2d, instead, the system becomes jammed, and
therefore z ¼ 2d represents the point at which the disor-
dered branch of the hard sphere state diagram must
terminate.
We therefore adopt Bernal’s view of RCP and argue that

z ¼ 2d is the only well defined criterion to define RCP,
whereas ϕRCP follows from the z ¼ 2d condition and is
affected by the system- and protocol-specific ways by
which z ¼ 2d is reached.
In the following, we therefore impose that z ¼ 2d

defines the RCP state in any dimension d, and we derive
ϕRCP from this condition for d ¼ 3 first and subsequently
verify that the same procedure yields a sensible estimate of
ϕRCP also in d ¼ 2.
To deal with the strong statistical correlations among

particles in the dense hard sphere system, we employ
suitably modified liquid state theory for the radial distri-
bution function (RDF). It is known that liquid theories of
the RDF are unable to predict the divergence of pressure at
RCP, and also cannot predict the formation of permanent
nearest-neighbor contacts at RCP. However, they still
provide a useful analytical starting point to account for

the statistical increase of crowding around a test particle, as
ϕ increases [20].
We start from the standard definition of coordination

number z based on the RDF, which in d ¼ 3 reads as [21]

dz ¼ 4π ρgðrÞr2dr; ð2Þ

where dz represents the average number of particles lying
in the range rþ dr.
We now introduce the quantity σþ ≡ σ þ ϵ where ϵ is an

arbitrarily small number, ϵ → 0þ. Hence, the average
number of particles in contact (just touching) with a test
particle is given (in d ¼ 3) by

z ¼ 4πρ

Z
σþ

0

gðrÞr2dr: ð3Þ

As is standard, gðrÞ is defined as the probability of
finding the center of a particle at a distance r, within dr,
from the test particle at the origin of the reference frame
[21]. Focusing on the contact or near contact region,
we define a suitably normalized probability density func-
tion (PDF) for the contact region gcðrÞ in a generic d-
dimensional space:

ρ

z

Z
σþ

0

gcðrÞμðrÞdr ¼ 1; ð4Þ

where μðrÞ is the appropriate metric factor for the d-
dimensional space, e.g., μðrÞ ¼ 4πr2 in d ¼ 3, μðrÞ ¼ 2πr
in d ¼ 2 and so on.
In probability theory, besides fully continuous and fully

discrete probability distribution functions, one can also
define partially continuous distributions, also known as
mixed distributions or mixed random variables [22]. As an
example of a fully discrete distribution, the PDF fdðxÞ of a
distribution consisting of a set of points xi ¼ fx1;…; xng,
with corresponding probabilities pi ¼ fp1;…; png can be
written as fdðxÞ ¼

P
i piδðx − xiÞ [23]. A partially con-

tinuous (PC) distribution can be written as [22]: fPCðxÞ ¼
cðxÞ þP

i piδðx − xiÞ where cðxÞ is the continuous part
and the second term is the discrete part. The latter implies
that the distribution returns exactly the value xi with
probability pi. Upon normalizing to 1 over the relevant
domain,

R∞
0 fPCdx ¼ 1, this is indeed a valid PDF [24].

Following the above considerations, we can treat the
total gðrÞ as a partially continuous PDF. Hence, we split it
into a discrete part which describes the probability of
having nearest neighbors in direct contact with the test
particle, that we call gcðrÞ, and a continuous part which
describes the probability of finding particles in the region of
space beyond contact (BC), i.e., r > σþ, that we call
gBCðrÞ,

gðrÞ ¼ gcðrÞ þ gBCðrÞ: ð5Þ
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Here, gcðrÞ is a discrete probability distribution defined
(consistent with the above generic examples [23,24]) as

gcðrÞ ¼ g0gðσÞδðr − σÞ; ð6Þ

where gðσÞ is the contact value of the gðrÞ [21,25], i.e.,
the probability of finding particles at exactly r ¼ σ,
and g0 is a normalization factor to be determined later
from (4). In turn, the total gðrÞ is therefore a generalized
PDF [24], which obeys the usual normalization condition
ð1=NÞ R∞

0 4πρgðrÞr2dr ¼ 1.
The statistical theory of hard-sphere liquids provides a

way to compute gðσÞ analytically up to the (unphysical)
packing fraction ϕ ¼ 1 [20,25,26], while remaining agnos-
tic about the possible onset of ordering. Exact analytical
solutions for gðσÞ of hard spheres in all odd space
dimensions are available based on Percus-Yevick (PY)
theory [27]. In d ¼ 3 the PY result is [26,27]

gðσÞ ¼ 1þ ϕ
2

ð1 − ϕÞ2 ð7Þ

and alternatively one can use the very accurate Carnahan-
Starling (CS) expression [26]

gðσÞ ¼ 1 − γðdÞϕ
ð1 − ϕÞd ; ð8Þ

with γðd ¼ 3Þ ¼ 0.5 and γðd ¼ 2Þ ¼ 0.435 99.
As the last step, we now only need a condition to

determine the normalization factor g0 in the definition of gc.
First of all, we notice that based on dimensional analysis,
g0 ∝ σ, to ensure dimensional consistency of Eq. (4). The
only possible condition that we can choose to determine the
numerical prefactor in g0 ∝ σ is based on the closest
packing (CP) value which spherical objects can never
exceed. As is well known, the closest packing of spheres
in d ¼ 3 occurs when z ¼ 12, and ϕCP ¼ ðπ=3 ffiffiffi

2
p Þ ¼

0.740 48 [2,4]. Of course, at this point the system has
perfect (fcc) ordering. This limit can be used as an effective
“boundary condition” in our problem to determine the
unknown prefactor. This choice is consistent with the well
known fact that disordered packings with partial order can
be formed in the range ϕRCP < ϕ < ϕCP [17].
Using therefore z ¼ 12 and ϕCP ¼ 0.740 48 in (4), and

recalling that 4
3
πðσ=2Þ3ρ≡ ϕ, in d ¼ 3, we just need to

solve

24ϕCP
1

σ
g0gðσÞ ¼ 12; ð9Þ

where gðσÞ is evaluated at ϕCP ¼ ðπ=3 ffiffiffi
2

p Þ ¼ 0.740 48.
Using the PY expression (7), we can solve analytically for
g0 and find

g0 ¼
ð ffiffiffi

2
p

π − 6Þ2ffiffiffi
2

p
πð ffiffiffi

2
p

π þ 12Þ σ ≈ 0.033 189 4σ: ð10Þ

We can now insert this result in (6), and replace the latter
in (4). We now impose the RCP condition z ¼ 2d ¼ 6 valid
in d ¼ 3 from (1), and solve analytically the following
equation

24
ð ffiffiffi

2
p

π − 6Þ2ffiffiffi
2

p
πð ffiffiffi

2
p

π þ 12ÞϕRCP
1þ ϕRCP

2

ð1 − ϕRCPÞ2
¼ 6 ð11Þ

from which we obtain the explicit analytical solution for the
random close packing fraction in d ¼ 3:

ϕð3DÞ
RCP ¼

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
648þ π½πð54 − 24

ffiffiffi
2

p
π þ 5π2Þ − 108

ffiffiffi
2

p �
q

36
ffiffiffi
2

p þ πð ffiffiffi
2

p
π − 36Þ

þ 2ð36 ffiffiffi
2

p
− 48πÞ

36
ffiffiffi
2

p þ πð ffiffiffi
2

p
π − 36Þ − 3

¼ 0.658 963; ð12Þ

which is well within the range 0.61 − 0.69 for RCP
observed with different experiments and simulations [8],
and somewhat larger but not too far from the most quoted
value ϕ ≈ 0.64.
The same procedure can be done using the CS expres-

sion instead of the PYone, which yields ϕRCP ¼ 0.677 376,
i.e., a higher value. This can be understood as a different
“protocol” for implementing statistical strong correlations
among particles. One should note that while z ¼ 2d always
applies at RCP, the corresponding ϕRCP is not univocally
determined and depends on the realization of disorder and
the “crowding” protocol.
As a consistency check, we now turn to the RCP in

d ¼ 2. The metric factor in (4) is now μðrÞ ¼ 2πr, and we
need to resort to the CS expression valid in d ¼ 2 for gðσÞ,
provided by (8) with d ¼ 2. The condition that we need to
apply to determine the numerical prefactor of g0 is
analogous, mutatis mutandis, to the one used in d ¼ 3.
That is, we impose the maximum close packing condition

in d ¼ 2, which is z ¼ 6 at ϕð2DÞ
CP ¼ ðπ=2 ffiffiffi

3
p Þ ¼ 0.906 90.

Proceeding in the same manner as before, this time we
obtain

8ϕCP
1

σ
g0gðσÞ ¼ 6; ð13Þ

and again g0 ∝ σ for dimensional reasons. The above
equation can be solved analytically for the prefactor of

g0, by imposing ϕð2DÞ
CP ¼ ðπ=2 ffiffiffi

3
p Þ ¼ 0.906 90, which

yields
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g0 ¼ 0.011 856σ: ð14Þ

As done before, we can now insert this result in (6), and
replace the latter in (4). We now impose the RCP condition
z ¼ 2d ¼ 4 from (1), and solve analytically the following
equation:

8 · 0.011 856 · ϕRCP
1 − 0.435 99ϕRCP

ð1 − ϕRCPÞ2
¼ 4; ð15Þ

from which we obtain the explicit solution for the random
close packing in d ¼ 2:

ϕð2DÞ
RCP ¼ 0.886 44: ð16Þ

This estimate is again within the widely reported interval
0.81 − 0.89 [15], although closer to the upper end. Values
of ϕRCP ≈ 0.89 have been reported in numerical simula-
tions [28] and analytical estimates based on heuristic local
packing geometry considerations [12].
In future work, this approach can be further extended in

several directions. For example, it can be extended to
nonspherical particle packings, e.g., packings of ellipsoids.
This is possible because (anisotropic) expressions for the
gðrÞ based on PY theory are available also for ellipsoids
[29], and have been used in the past to study glass transition
of dumbbells within mode-coupling theory [30] and
numerical simulations [31]. The extended PY theory of
Ref. [29] can thus be used as input within the above
framework to make explicit predictions for the ϕRCP of
ellipsoids. Similarly, the present approach can also be
extended to higher spatial dimensions, by using PY theory
or CS expressions valid for higher dimensions [26],
together with suitably modified expressions for the hyper-
sphere packing fraction and volume integration metrics
[32]. This will lead to explicit formulae for ϕRCP as a
function of d that can be compared with existing computa-
tionally more elaborate approaches [16].
Further future extensions, in perspective, may lead to

application of the present framework to systems with
inherent contact network, like freely jointed chains of hard
spheres [33] or even linear polymer chains of spheres where
jamming (RCP) is closely related to glass transition [34].
In summary, we presented the first simple and closed-

form analytical solution for the random packing problem in
both d ¼ 2 and d ¼ 3. While previous approaches rely on
elaborate theoretical frameworks and often involve numeri-
cal steps to arrive at the final solution, or are based on
heuristic local geometry considerations, the solution pre-
sented here relies exclusively on the statistical mechanics of
hard spheres to account for the strong particle correlations
and the increase of crowding upon increasing the packing
fraction. The derivation is therefore “order agnostic” in the
sense that it does not specify the structural ordering of the
particles but merely their statistical excluded volume

correlations. As suggested by the solution procedure, the
only well defined notion of RCP is given in terms of the
coordination number, which is z ¼ 2d at RCP in d
dimensions. As shown above, this is the only well defined
starting point to compute the packing fraction at RCP,
which instead is not univocally defined and depends on the
actual protocol that one uses to implement the spatial
correlations between the particles. This is exemplified by
the slightly different values of ϕRCP using different imple-
mentations of hard sphere theory. The new method intro-
duced above can be easily extended in future work to
dimensions d > 3 and to nonspherical packings.
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