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We study the phase behavior of a quasi-two-dimensional cholesteric liquid crystal shell. We characterize
the topological phases arising close to the isotropic-cholesteric transition and show that they differ in a
fundamental way from those observed on a flat geometry. For spherical shells, we discover two types of
quasi-two-dimensional topological phases: finite quasicrystals and amorphous structures, both made up
of mixtures of polygonal tessellations of half-skyrmions. These structures generically emerge instead of
regular double twist lattices because of geometric frustration, which disallows a regular hexagonal tiling of
curved space. For toroidal shells, the variations in the local curvature of the surface stabilizes heterogeneous
phases where cholesteric patterns coexist with hexagonal lattices of half-skyrmions. Quasicrystals and
amorphous and heterogeneous structures could be sought experimentally by self-assembling cholesteric
shells on the surface of emulsion droplets.
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Chiral liquid crystals have remained of high interest to
physicists for decades, because they simultaneously pro-
vide a fertile ground for applications to nanotechnology
[1–4], as well as a practical realization of topological
phases in condensed matter [5–7]. A paradigmatic example
is that of blue phases, which arise close to the isotropic-
cholesteric transition and consist of 3D packings of double
twist cylinders [5]. These phases have been used as lasers
[1] or display devices [8] and proposed as templates for
colloidal photonic crystals [9]. Blue phases I and II are
crystalline, whereas the structure of blue phase III, also
called the blue fog, has long constituted a puzzle in
condensed matter physics [5]. Early theories predicted it
to be either a quasicrystal or an amorphous solid. More
recent computer simulations [10] and photopolymerization
experiments [11] have showed that the latter model is more
accurate and suggest that the blue fog is a thermodynami-
cally stable amorphous lattice of disclinations, locally akin
to blue phase II.
Chiral liquid crystals also form hexagonal lattices of

double twist cylinders, called half-skyrmions or merons, in
thin quasi-2D samples, and arrays of ring defects or more
exotic knotted field states, known as hopfions, in thicker
samples [12–16]. Hopfions and half-skyrmions are topo-
logical quasiparticles that can be created optically and
manipulated by an electric field [16]. Blue phases and half-
skyrmion lattices arise due to a phenomenon known as
“topological frustration”: the chiral nature of the underlying
molecules locally favors doubly twisted structures, but
double twist cylinders create director field patterns that
cannot be patched together smoothly without creating

defects, or disclination lines. The structures seen in experi-
ments and predicted theoretically are, therefore, those that
provide the best compromise between the favorable double
twist and the energetically costly defects [13,17].
Here we use lattice Boltzmann simulations to study what

phases form when a cholesteric liquid crystal is confined to
a thin shell surrounding a curved closed surface, whose
width is less than a cholesteric pitch. Henceforth, we refer
to this system as a cholesteric shell. Their experimental
realization was studied in [18–20], which instead mainly
focused on much thicker shells, with width larger or much
larger than the pitch, where cholesteric stripes or focal
domain patterns appear [18].
For spherical shells, we discover that the topological

phases emerging close to the isotropic-cholesteric transition
are fundamentally different from the regular hexagonal
lattices of half-skyrmions found for flat geometries
[6,14,21,22]. The curved geometry of spherical shells
introduces an additional geometric frustration, as the
Gauss-Bonnet theorem forces the total topological defect
charge of the tessellation to equal the Euler characteristic of
the surface, which is þ2 for spherical topologies [23–25].
As a result, a regular hexagonal lattice of half-skyrmions is
impossible to realize, as its overall topological charge is
zero. At small radii, we observe the formation of finite
quasicrystals that consist of polygonal mixtures reminis-
cent of the structures formed by patchy colloids on the
surface of a droplet [26]. As the radius of the confining
shell is increased, these regular structures give space to
amorphous arrangements with a multifarious variety of
double twist polygons scattered with no rule: they may be
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viewed as an analog of the blue fog in a curved 2D
geometry. Close to this topological transition we observe
“scars”—chains of alternated pentagons and heptagons—
which mediate the loss in regularity of the tessellation.
We also find that curvature can direct pattern formation

and self-assembly in shells with nonconstant curvature (like
a torus). This feature can be exploited to tilt the balance in
favor of either helical patterns or a regular half-skyrmion
lattice, resulting in heterogeneous systems. This rich phase
behavior could be probed experimentally with cholesteric
shells of variable curvature. Our study bridges the topics of
topological frustrations in cholesterics with that of ordering
on a closed geometry. The case of spherical shells can also
be viewed as a generalization of the Thomson problem—
finding the optimal arrangements of pointlike charges on a
sphere—to phase shifting topological quasiparticles (half-
skyrmions that can attain the form of any polygon).
We use a Landau–de Gennes approach to model a

cholesteric shell, constituted by a chiral liquid crystal
(LC), with orientational order described by the nematic
tensor Q. To stabilize the LC shell, we confine Q to a thin
interface of a fluid droplet, described by a phase field ϕ for
computational convenience. The free energy of the system
is F ¼ F chol þ Fϕ, where

F chol ¼
Z
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The term proportional to the energy scale A0 describes
the isotropic-cholesteric transition that occurs at
χ > χcr ¼ 2.7, while the one proportional to the elastic
constant L accounts for the energy cost of elastic defor-
mations. The parameter q0 > 0 favors right-handed twist
with equilibrium pitch p0 ¼ 2πq−10 in bulk systems [27,28].
For a > 0, there are two possible equilibrium values for ϕ
(0 and ϕ0), while kϕ determines the surface tension and the
interface width. To model a spherical shell, we create a
droplet of radius R in the phase field (ϕ ≃ ϕ0 inside and
ϕ ≃ 0 outside) and confine the LC to the interface by setting
χ ¼ χ0 þ χsð∇ϕÞ2, with χ0 < χcr, so that the Q tensor is
different from zero only on a thin shell (width ∼ξ) at the
droplet interface (Fig. S1 [29]) [41–44]. Toroidal shells can
be obtained through a suitable spacial patterning of ϕ0ðrÞ
(see Supplemental Material [29]).
The key control parameters of the system are (i) the

reduced temperature τ ¼ 9ð3 − χÞ=χ, (ii) the chirality
strength κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
108q20L=ðA0χÞ

p
proportional to the ratio

between nematic coherence length and cholesteric pitch
[5,31], and (iii) the ratio between shell radius and
cholesteric pitch R=p0 [45]. We set parameters such that

the interfacial thickness ξ ¼ ð4kϕ=aϕ0Þ1=2 ≪ p0, to model
thin shells. In the bulk, Eq. (1a) is minimized by the helical
phase [5], for τ < τcðκÞ ¼ 1

8
½1 − 4κ2 þ ð1þ 4κ2=3Þ3=2�.

The isotropic phase is stable if τ ≳ 0.8τcðκ ¼ 0Þ. In 3D,
blue phases are found for sufficiently large chirality
between the helical and isotropic phase [46]. In 2D,
regular half-skyrmion lattices with hexagonal symmetry
appear [14].
LC hydrodynamics is ruled by a set of time-dependent

differential equations [29]. The Beris-Edwards equation
DtQ ¼ H, where Dt is the material derivative for a tensor
field and the molecular field H ¼ −½ðδF Þ=ðδQÞ� þ
ðI=3ÞTr½ðδF Þ=ðδQÞ� drives the LC toward its equilibrium
state [29]. The phase field ϕ evolves according to a Cahn-
Hilliard-like equation [29]. We stress that the model
parameters are chosen in such a way that the droplet does
not deform, so that the volume occupied by the LC is
factually conserved during the relaxation dynamics.
Finally, the Navier-Stokes equation for the flow field v
accounts for momentum balance with an elastic stress
depending on the orientational order. The inclusion of
hydrodynamic interactions lowers the likelihood for the
system to get trapped into metastable states [10]. The
equations are solved via a hybrid lattice Boltzmann
approach [32–35,47] in 3D grids of size ranging from
1283 to 3843 with periodic boundary conditions. Further
simulation details and parameters are given in the
Supplemental Material [29].
We start from the case of spherical shells. We fix τ ¼

0.540 and q0 ¼ 0.245, and vary κ and R=p0 (which we
controlled by modifying L and R, respectively). For low κ
(κ ≲ 0.12; L≲ 10−3), the system is in the helical phase
where the LC arranges into a spiral pattern winding around
the shell. The spiral axis is defined by two pairs of þ1=2
defects at each pole of the shell [Fig. 1(a)]. For high
chirality (κ ≳ 1.1, L≳ 0.07), the system is in the iso-
tropic phase.
For intermediate chirality, topological phases arise. In

our curved geometry, these emerge as polygonal tessella-
tions of the surface corresponding to half-skyrmions,
separated by point defects with topological charge −1=2.
Importantly, hexagonal half-skyrmion lattices as those
observed in a flat 2D geometry [6,48] have zero total
topological charge and are, therefore, forbidden on a sphere
by the Gauss-Bonnet theorem [24,49]. Thus, the ensuing
tessellation needs to involve polygons other than hexagons.
As an n-edge polygon in the tessellation contributes a
charge of 1 − n=6, the topological constraint provided by
the Gauss-Bonnet theorem can be expressed through the
Euler formula for polyhedra as a condition on the number
and types of polygons used for the tessellation,P ð1 − n=6ÞNn ¼ 2, where Nn is the number of n-edge
polygons.
Figures 1(b)–1(f) show a gallery of different topological

phases found at varying both κ and R=p0; Fig. S6 in the
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Supplemental Material [29] shows corresponding predic-
tions for cross-polarized textures that could be observed in
experiments. We observe two main types of structures.
For small radii (up to R ≃ 65), the structures are locally
regular, although the tessellations involve a mixture
of different polygons. At R ¼ 40 and low chirality
(κ ¼ 0.424, L ¼ 0.01), we observe a regular network of
octagons, hexagons, and squares (which we denote with
OHS), where each polygon borders an equal number of
polygons of different types in a well-defined orderly
fashion: for instance, in an octagon, if an edge borders a
hexagon, the neighboring edges need to border squares
[Fig. 1(b)]. At larger chirality κ ¼ 0.735 (L ¼ 0.03), we

find a football (or soccer ball) configuration [Fig. 1(c)]
composed of hexagons and 12 pentagons (HP), with each
hexagon bordering exactly three pentagons—namely, a
truncated icosahedron.
The local order found in this regime is reminiscent of that

of quasicrystals [50,51]; hence we refer to these polygonal
mixtures as “finite quasicrystals” (FQCs). For larger radii,
the topological phases are fundamentally different.
Polygonal tessellations found in steady state appear much
more disordered, and no simple correlation between the
types of neighboring polygons is seen: the resulting half-
skyrmion arrangement is instead akin to an amorphous
lattice.
To quantify the degree of regularity of a polygonal

tessellation, we introduce a phenomenological order
parameter ψn, where n refers to the component of n-edge
polygons in the tessellation, defined as follows. Let us
denote by θj the angle defined by the midpoints of a pair of
neighboring edges and the center of the corresponding
n-edged polygon, with j a label identifying the pair.
Additionally, let us call N j

1 and N j
2 the number of edges

of the two gray bordering polygons in the inset of
Fig. 2(b). The order parameter ψ j

n is defined for each pair
of neighboring edges j as

(a) (b)

(d)

(f)(e)

(c)

FIG. 1. Shell configurations. (a) Contour plot of Qxx in the
helical phase at R ¼ 40; L ¼ 10−3. Three FQC configurations
are shown in (b),(c),(e), respectively, OHS at R ¼ 40; L ¼ 10−2,
HP at R ¼ 40; L ¼ 3 × 10−2, and OHP at R ¼ 50; L ¼ 2 × 10−2

(see text for acronyms). (d) The director field pattern of two
half-skyrmions and nine −1=2 defects defining a pentagon
and a hexagon in (c). (f) An amorphous configuration at
R ¼ 80; L ¼ 4 × 10−2. Color code in (b)–(f) corresponds to
the isotropy parameter cs of the Westin metrics [29,30]: blue
regions define defect positions (Q ∼ 0), while red ones are
ordered (Q ≠ 0).

(b)

(c)
(d)

(a)

FIG. 2. Finite quasicrystals and amorphous configurations. (a),
(b) Normalized ψn probability distribution function for the OHS
and the amorphous configuration of Figs. 1(b) and 1(f). The
expected values are ψ4 ¼ 22, ψ6 ¼ 12.6, ψ8 ¼ 7.85 [29]. (Inset)
Bessel spectra for the HP configuration (blue), the analytical
solution of the Thomson problem with 32 particles (dashed
yellow), and an amorphous configuration (red). Inset of (b) illus-
trates the definition of ψ j

n. (c) Free energy density vs L. (d) Phase
diagram in the L–R plane.
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ψ j
n ¼ θjðN j

1 þN j
2Þ: ð2Þ

For a regular lattice, its distribution ψn is a Dirac delta
function peaked at 4π, while for a FQC it is a Dirac comb
[29,52]. In contrast, for amorphous structures, ψn should
broaden and the peaks flatten.
Figure 2(a) shows ψn for the OHS configuration of

Fig. 1(b). The distributions are strongly peaked, thus
signaling the local regularity expected for a FQC state.
(The observed spreading is due to a slight deformation of
the polygons.) Instead, the distributions computed for
configurations in the large R regime [Fig. 1(b)] are
qualitatively different and spread out over a much wider
range of values; thereby we call these structures amorphous
[53]. The presence of a fundamental difference between
these phases is confirmed by an analysis of the Bessel
spectra [36,37] of the polygonal tessellations [Fig. 2(a),
inset, and [29] ]. The spectrum of the HP configuration
matches that of the solution of the Thomson problem for
the optimal location of charged particles on a sphere,
whereas the amorphous state spectrum is less regular.
The panoply of possible configurations in the FQC

regime can be related to the multiple candidate structures
arising when minimizing the free energy. The latter can be
approximated as [29,38] F fNng ¼

P
n ½F nðlÞþnF d=3�Nn,

where F d is the energy (∼L) of a −1=2 disclination and
F nðlÞ ¼

R
PnðlÞ f½Q�dS represents the free energy associ-

ated with a polygonPnðlÞwith n edges of length l (with the
free-energy density f½Q� ∼ 1þ r−2). Since the area of each
polygon is AðPnÞ ¼ n cotðπ=nÞðl2=4Þn2, it is energetically
favorable to have a large number of polygons with many
edges. However, the more edges, the more negative is the
topological charge associated with the polygon, which
requires more polygons with a number of edges n < 6
to satisfy the Euler formula. It is this competition between
energy and topology that gives rise to a large variety of
possible quasicrystals.
Reasoning along similar lines, one also expects that, as R

increases, locally different tessellations can be patched
together to yield an amorphous structure at only moderate
cost, as the density of structural defects arising in the
patching should decrease with size. Close to the transition
between the football configuration and the amorphous
phase, we also observe intermediate structures where
pentagonal disclinations nucleate lines of dislocations
(joint pairs of pentagons and heptagons with null topo-
logical charge). These are denoted by HP* in Fig. 2(d) and
are similar to scars found in spherical colloidal crystals
[55–57]. Scar formation may therefore mediate the tran-
sition to our amorphous state. For sufficiently large R,
amorphous states are either metastable [29] or thermody-
namically stable, in which case their free energy is lower
than that of any of the quasicrystal phases observed in our
simulations [see Figs. 2(c) and 2(d) and Sec. VI of the
Supplemental Material [29] ]. For R ∼ 70–80, we also find

an OHS-amorphous transition, which is triggered by
increasing the elastic constant L (or the LC chirality).
These observations suggest that the amorphous phase we
have found has properties similar to that of blue phase III
[10], or the blue fog, and for that reason we call it the
“two-dimensional blue fog.”
Our framework allows us to consider shells of different

shapes and topology, and we discuss here the case of a
toroidal surface [58–60] that leads to additional phenom-
enology (Fig. 3). Since the Euler characteristic of a torus
equals zero, hexagonal half-skyrmion lattices are possible.
However, unlike a flat surface, a torus has variable and
nonzero local curvature that leads to an additional space-
dependent saddle-splay term in the free energy proportional
to δF curv ∝ L=κG [61], with κG being the local Gaussian
curvature [49]. Such contribution, albeit small, can strongly
affect the stability and morphology of topological phases.
Thus, for a fixed toroidal geometry and reduced temper-
ature, we vary κ by increasing N ¼ 2Rq0=π, the number of
times that the director winds around the torus when in the
chiral phase, R being the major radius of the torus. At small
κ, defect-free helical patterns are formed [Fig. 3(a)], while
topological phases are observed when chirality increases
past N ∼ 8.5. The curvature-dependent saddle-splay term
favors half-skyrmions where κG > 0 and the defect-
free cholesteric phase where κG < 0. Consequently, the
ordering on the manifold becomes heterogeneous with a

(a)

(c)

(b)

(d)

FIG. 3. Curvature-induced topological phases. (a)–(c) LC
patterns on toroidal shells for different chirality strength κ. In
the cholesteric phase of (a) at N ¼ 1, the director field winds
around the torus—color code as in Fig. 1(a). (b) At N ¼ 8.5, a
heterogeneous pattern emerges with a half-skyrmion lattice only
in the regions with positive curvature. At N ¼ 12, the lattice
occupies the whole surface [color code as in Figs. 1(b)–1(f)].
(d) The biaxiality parameter cp [29] against the curvature for the
cases in (b) and (c).
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cholesteric phase in the internal region of the torus, and a
hexagonal pattern of −1=2 defects in the outer region
[Fig. 3(b)]. As expected, the boundary between the two
coexisting phases forms close to the saddle lines at κG ¼ 0.
At larger values of κ (N ≃ 12), the curvature-dependent
perturbation is no longer sufficient to stabilize the choles-
teric phase and the half-skyrmion lattice invades the whole
surface [Fig. 3(c)].
To conclude, we investigated the nature of the topologi-

cal phases arising in non-Euclidean cholesteric shells close
to the isotropic-cholesteric transition. We have shown that
the curved geometry, via the Gauss-Bonnet theorem,
frustrates the formation of regular half-skyrmion lattices,
which are instead stable on flat surfaces. On a spherical
shell, for intermediate chirality and small radii, the emerg-
ing structures are finite quasicrystals composed of a net-
work of surface defects with topological charge −1=2.
These structures can be seen as polyhedra composed of
regular polygons, corresponding to half-skyrmion tessella-
tions of the surface of the sphere. For larger shells, a
qualitatively distinct amorphous phase develops: this is
characterized by a disordered arrangement of polygons on
the shell, similar to the three-dimensional structure of blue
phase III. Simulations suggest that, like blue phase III, the
amorphous phase is thermodynamically stable in a finite
parameter range. The topological transition between quasi-
crystalline and amorphous tessellation may in some param-
eter range be mediated by the nucleation of dislocation
scars, analogous to those found in spherical crystals [55].
In addition to being of theoretical interest, we hope our

work will also stimulate future experiments. Cholesteric
shells can be created in the lab by confining liquid crystals
to the surface of emulsion droplets [62,63], and surfaces
with nontrivial genus can be generated. Such systems are
ideally suited to search for the structures we predicted.
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