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A Dirac electron system in solids mimics relativistic quantum physics that is compatible with Maxwell’s
equations, with which we anticipate unified electromagnetic responses. We find a large orbital
diamagnetism only along the interplane direction and a nearly temperature-independent electrical
conductivity of the order of e2=h per plane for the new 2D Dirac organic conductor, α-ðBETSÞ2I3,
where BETS is bis(ethylenedithio)tetraselenafulvalene. Unlike conventional electrons in solids whose
nonrelativistic effects bifurcate electric and magnetic responses, the observed orbital diamagnetism scales
with the electrical conductivity in a wide temperature range. This demonstrates that an electromagnetic
duality that is valid only within the relativistic framework is revived in solids.
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Dirac electron systems (DESs) such as bismuth and
graphene can be described by the Dirac equation and
provide a platform to realize physical properties rooted in
relativistic quantum physics [1,2]. One prominent prop-
erty of DESs is their large orbital diamagnetism, which
reaches a maximum when the chemical potential is in the
mass gap, unlike Landau diamagnetism in metals. This
orbital diamagnetism, which is theoretically argued to
originate from the interband effect of magnetic fields, is
observed in three-dimensional (3D) DESs including
bismuth and antiperovskites [3–6]. This mechanism also
applies to two-dimensional (2D) systems. The diamag-
netism was observed for mass-produced graphene flakes
[7]. Here, the random orientation of the flakes prevented
separating the orbital diamagnetism agreeable with theory.
Organic conductors have recently been found to realize
2D DESs with a bulk form such as α-ðBEDT-TTFÞ2I3
(BEDT-TTF ¼ bisðethyleneÞdithiotetrathiafulvalene) [8–
10]; however, this is realized only under high pressure,
limiting magnetic experiments and making it difficult to
obtain the absolute value of the susceptibility using
superconducting quantum interference device (SQUID)
magnetometers.
The electric responses of 3D and 2D DESs show a sharp

contrast. The uniform permittivity of bismuth is enhanced in
accordance with its orbital diamagnetism [11,12]. On the
other hand, graphene has no enhancement in the permittivity
but rather shows exotic quantized optical conductance and
minimumdc conductivity throughKlein tunneling [2,13,14].
The organic conductor α-ðBEDT-TTFÞ2I3 also shows
temperature-independent conductivity on the order of e2=h
per sheet [15].

These magnetic and electric responses of DESs can be
viewed as parallel to quantum electrodynamics (QED), a
relativistic quantum field theory, in which two responses
are unified due to the Lorentz covariance (spacetime
symmetry). Indeed, for 3D DESs, the large orbital dia-
magnetism and the enhanced permittivity can be explained
by charge renormalization in a unified way, demonstrating
an electromagnetic duality specified by the spacetime
symmetry of the Dirac equation [16]. In contrast to 3D
DESs, permittivity enhancement due to charge renormal-
ization is absent in 2D DESs [17], although they do exhibit
a quantized conductance. The dependence of the charge
renormalization on the dimensionality of the system raises
the fundamental question of the existence and nature of the
universal phenomena in DESs irrespective of the system
dimension. Therefore, the two principal goals of the study
of 2D DESs are to determine the behavior of the orbital
diamagnetism and its relationship with quantized electric
responses, and to clarify whether the two responses can be
described by a unified theory. Observation of the orbital
diamagnetism would resolve these questions, and in order
to obtain absolute values of the magnetic susceptibility, a
bulk-form single crystal at ambient pressure would be ideal.
In this Letter, we demonstrate the magnetic and transport

properties of a newly identified 2D DES organic conductor
with a bulk form at ambient pressure, α-ðBETSÞ2I3 with a
strongly anisotropic magnetic susceptibility χ. We discrimi-
nated a large orbital diamagnetism (χorb) from a spin
susceptibility (χspin) by changing the field direction. χorb
shows quantitative agreement with the theory for T > 50 K,
where the dc conductivity (σdc) per sheet is independent of
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temperature with the value of e2=h. The −Tχorb scales with
σdc in a wide temperature range, showing an electromagnetic
duality specified by the spacetime symmetry in DESs,
corresponding to the Lorentz covariance in QED.
α-ðBETSÞ2I3 is composed of bis(ethylenedithio)tetrase-

lenafulvalene (BETS) molecules that contain Se atoms
[Fig. 1(a)] [18,19]. The structure is isomorphous with
α-ðBEDT-TTFÞ2I3, as shown in Fig. 1(b). The molecular
orbital of BETS is spatially larger than that of BEDT-TTF,
which yields uncorrelated electron characteristics and
prevents the instabilities toward charge ordering or exci-
tonic orders observed in α-ðBEDT-TTFÞ2I3 [20]. This
noninteracting character enables us to extract the ideal
physics of DES through theoretical and quantitative
analysis.
The full relativistic first-principles calculation provides a

Dirac-like linear dispersion with a mass gap of ≈2 meV

[Fig. 1(c)] and an effective “speed of light” of v ≈ 5 ×
104 m=s [21–24]. The resistivity above 50 K is nearly
independent of temperature, as has also been observed
in the high-pressure massless Dirac phase of α-ðBEDT-
TTFÞ2I3 [Fig. 1(d)].Here, Dirac electrons compensate for the
temperature dependence of the mobility and the density of
states [8], resulting in the temperature-independent resistivity
corresponding to quantum sheet resistance, ðh=e2Þd ¼
4.6 mΩ cm, where d ¼ 17.8 Å is the interplane distance
using the value of the lattice constant along c.
The resistivity increases upon cooling below 50 K

without a phase transition, consistent with the mass gap,
but does not follow an activated temperature dependence.
The Hall coefficient (RH) is small above 50 K, and its sign
changes at T ¼ 150 K from high-temperature positive
(holelike) values to low-temperature negative (electronlike)
values, as shown in Fig. 1(e). This indicates that the Fermi

S Se
13C

E

kx

ky
Quantum resistance(h/e2)d

O b

a

| R
H

 | 
(c

m
3 

C
-1

)

(a)

(b)

(c) (d)

(e)

FIG. 1. (a) Molecular structure of bis(ethylenedithio)tetraselenafulvalene (BETS). Carbon atoms encircled in red are labeled by 13C for
NMR experiments. (b) Molecular arrangement of conducting plane of α-ðBETSÞ2I3. (c) Dirac cone band dispersions calculated by
ab initio method. (d) Resistivity at ambient pressure. The bulk resistivity corresponding to the quantum sheet resistance, ðh=e2Þd, is
shown as the dashed line. (e) Absolute values of the Hall coefficient.

FIG. 2. Magnetic properties of α-ðBETSÞ2I3. (a) Magnetic susceptibilities (χ) of a single crystal measured forHka, b, and c directions
and polycrystalline samples. In the inset, the hatched area is the ab-plane hosting the 2D Dirac electrons isolated by anion (I3) layers.
(b) Spin (χspin) and orbital (χorb) susceptibilities scaled by χ0 ¼ μ0e2=2πm0d. Solid curves are calculated susceptibilities for Δ ¼ 50 K
using Eqs. (1) and (2). (c) Nuclear spin-lattice relaxation rate divided by temperature, 1=T1T, of 13C NMR. The solid curve is a
functional form of 1=T1T ¼ aT2.5 þ b logðT�=TÞ. The dashed curve of 1=T1T for an organic DES, α-ðBEDT-TTFÞ2I3, under high
pressure is from Ref. [20]. (d) Ratios of 1=T1 ’s for Hkc and H⊥c calculated using data in (c).

PHYSICAL REVIEW LETTERS 128, 027201 (2022)

027201-2



energy is in the mass gap but shifts slightly with temper-
ature. At 150 K, the Fermi energy will be exactly at the
midpoint of the gap.
We show in Fig. 2(a) the magnetic susceptibilities χa;b;c

for Hka, b, and c (interplane direction). The susceptibility
χa, which nearly agrees with χb, decreases linearly upon
cooling below 150 K, consistent with Dirac-type linear
dispersion. A possible in-plane anisotropy of χ originating
from the tilting of the Dirac cone is negligible; therefore,
we can consider that χa;b solely depends on the density of
states and the electronic correlation is negligible. A detailed
formula for the spin contribution to χ is given below using
χ0, the spin susceptibility of 2D nonrelativistic electron gas
with the interplane distance d:

χspinðTÞ ¼
m�

m0

χ0

�
2

βΔ
ln

�
2 cosh

βΔ
2

�
− tanh

βΔ
2

�
; ð1Þ

where m0 is the electron mass, Δ ¼ m�v2 is the mass gap,
and β ¼ 1=kBT. χ0 ¼ μ0e2=2πm0d ¼ 1.57 × 10−7 in
Systeme International (SI) units, where μ0 is the vacuum
permeability. The chemical potential μ is set to be zero for
simplicity (see Ref. [21] for general μ). In Fig. 2(b), we plot
χspin using Δ ¼ 50 K, which provides m� ¼ Δ=v2 ¼
0.3m0 with the ab initio value of v, as well as the

experimental χðexpÞspin ¼ ðχa þ χbÞ=2, and find that this sim-
ple formula quantitatively reproduces the experiments.
The magnetic susceptibility perpendicular to the con-

ducting plane, χc, is strongly suppressed and shows negative
values below 150 K, which indicates an orbital diamagnet-

ism, χðexpÞorb ¼ χc − χðexpÞspin , that emerges only along the c
direction. This diamagnetic χorb was theoretically predicted
for 2D DESs [25,26]. In contrast to spins, which are
conserved, the orbital currents that generate χorb are not
conserved. In general, the susceptibility of a nonconserved
quantity has a contribution from high-energy bands,

χðexpÞorb ð∞Þ, which is independent of temperature and irrel-

evant to the Dirac band. We estimated χðexpÞorb ð∞Þ by fitting

χðexpÞorb ðTÞ for T > 100 K with χðexpÞorb ðTÞ ¼ const × 1=T þ
χðexpÞorb ð∞Þ [see below Eq. (3)]. We plot in Fig. 2(b) the

temperature-dependent component χorbðTÞ ¼ χðexpÞorb ðTÞ−
χðexpÞorb ð∞Þ.
For free electrons, a detailed formula for χorbðTÞ in the

presence of a mass gap is given by [27]

χorbðTÞ ¼ −
2

3

m0

m� χ0 tanh
βΔ
2

; ð2Þ

where the chemical potential μ is set to be zero (see
Ref. [21] for general μ). In Fig. 2(b), we plot experimental
and calculated χorb obtained using Eq. (2) with the same
parameters as those for χspin. We find quantitative agree-
ments between the experimental and theoretical values as

well as those for χspin in the wide temperature range of
T > 50 K. Equation (2) shows a crossover at T ≈ Δ=kB and
is approximated as

χorbðTÞ ¼ −
2

3

m0v2

maxðΔ; 2kBTÞ
χ0 ð3Þ

so that χorbT ¼ const is expected for T ≳ Δ=kB.
The observed uncorrelated character of the 2D DES for

T > 50 K and the deviation of χorbðTÞ from Eq. (2) are
microscopically supported by 13C NMR. High-temperature
Korringa-like 1=T1T for T > 200 K is significantly
reduced following 1=T1T ∝ Tγ with γ ≈ 2 for 30 < T <
100 K as shown in Fig. 2(c), which indicates a linear
dispersion. Note that the observed 1=T1T is 5 times smaller
than that of α-ðBEDT-TTFÞ2I3, showing that the Dirac
electrons in α-ðBETSÞ2I3 are relatively free of one-body
renormalization of Coulomb repulsions [20]. The increase
in 1=T1T below 20 K indicates other emergent relaxation
mechanisms. Figure 2(d) depicts the anisotropies of 1=T1,
which we expect to be temperature-independent when the
spin contribution ð1=T1Þspin dominates 1=T1. The reduction
of the anisotropy below 100 K, the onset temperature of the
DES, coincides with that of ð1=T1Þspin. Since 13C does not
couple with the electric field gradient, the most plausible
source of the relaxation at low temperatures is the fluc-
tuation of the orbital currents, which contributes to 1=T1 as
1=T1 ¼ ð1=T1Þspin þ ð1=T1Þorb. Recent theories point out
that ð1=T1Þorb dominates 1=T1 in 3D Weyl materials
[28,29] but predict ð1=T1TÞorb ∝ T for clean 2D DESs,
which does not reproduce the experiments below 20 K [29].
Later, we will discuss a potential mechanism for the
deviation related to χorb.
The correspondence between DES and QED relates

Eq. (3) to the exotic quantized electric property in 2D
DESs. In parallel to the Lorentz covariance in QED, we can
show a duality between electric and magnetic responses in
DES [21,30,31]. For jμj ≤ Δ and T ¼ 0, the static magnetic
susceptibility χorb is given exactly as

χorb ¼ −
2

π

�
v
c

�
2
Z

∞

2Δ=ℏ

σðωÞ
ε0ω

2
dω; ð4Þ

where c and ε0 are the speed of light and vacuum
permittivity, respectively [21]. Here, σðωÞ is the dynamical
electrical conductivity, which originates only from inter-
band electron-hole excitations. Thus, this duality relation
indicates that dynamical vacuum fluctuations (the creation
and annihilation of virtual electron-hole pairs), or the
interband effect across the mass gap, necessarily generate
the orbital diamagnetism χorb < 0.
A dimensional analysis gives σðωÞ ∝ ðe2=hÞðω=vÞD−2

for the massless limit of Δ → 0 in the D dimensions. In
three dimensions (D ¼ 3), Eq. (4) leads to a logarithmic
divergence in χorb for Δ → 0, which corresponds to the
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well-known ultraviolet divergence in the charge renorm-
alization of QED [16]. In two dimensions (D ¼ 2), on the
other hand, there is no charge renormalization [17]. The
large diamagnetism χorb ∝ −1=Δ in Eq. (3) is therefore free
from charge renormalization but closely linked to the ω-
independent electrical conductivity for Δ → 0, where it
takes a universal value of σ0 ¼ e2=4ℏd (quantized optical
conductance) [14,32]. (In Table I, we summarize χorb and
σðωÞ as well as the permittivity ε for 3D and 2D DESs.)
More precisely, using a detailed formula for σðωÞ [32], we
find that the duality relation, Eq. (4), expresses χorb in terms
of the universal constant σ0 as

χorb ¼ −
4

3π

�
v
c

�
2 ℏ
ε0Δ

σ0: ð5Þ

It is noteworthy that the conductivity unit σ0 can be
rewritten using the susceptibility unit χ0 as σ0 ¼
ðπ2=Z0λeÞχ0, where Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p
≈ 120π Ω is the imped-

ance of free space and λe ¼ h=m0c is the Compton wave-
length, leading to the equivalence of Eqs. (3) and (5). This
equivalence shows that χorb scales with the universal electric
conductance σ0d ≈ e2=h even for finite temperatures.
The dc conductivity σdc ≡ ασ0 (α is of the order of 1) is

difficult to determine theoretically, depending on the
characteristics of the disorder [33–36]. α is naively given
as α ¼ 8=π2 [37] for 2D massless Dirac electrons but
remains under debate for T ≠ 0. The experimentally
obtained values of σdc ’s for organic DES, in contrast,
are independent of temperature both for α-ðBETSÞ2I3 and
α-ðBEDT-TTFÞ2I3; the σdc values are approximately equal
to σdc ¼ 14 kΩ−1m−1, corresponding to α ≈ 4=π2 [15].
We plot −χorbT and σdc, normalized by χ0 and σ0,

respectively, in Fig. 3, and find that these electromagnetic
responses are scaled in a wide temperature range, as
anticipated from Eq. (5). The observed electromagnetic
duality manifests itself in the correspondence with the
Lorentz covariance in QED. The interband effect across the

mass gap in the presence of electromagnetic fields char-
acterizes the physical properties.
We now discuss potential sources for the deviation of

χorbðTÞ from Eq. (2), although Eq. (1) does reproduce
χspinðTÞ below 40 K. The most plausible source is a
disorder in real materials, which raises a new problem
related to the interaction of disorder and orbital currents in
DESs. We found that the function 1=T1T ¼ aT2.5 þ
b logðT�=TÞ fits the 1=T1T, as shown in Fig. 2(c). The
logarithmic increase upon cooling below 20 K does not
originate from the electronic correlation, which enhances
1=T1T for the whole temperature range, and the crossing of
the 1=T1T curves of α-ðBETSÞ2I3 and α-ðBEDT-TTFÞ2I3
at T ≈ 10 K suggests disorder effects on ð1=T1Þorb. A
similar moderate increase of 1=T1T is observed for a 3D
Weyl system [38], which has been theoretically analyzed
considering the effects of impurities or temperature-depen-
dent chemical potential to ð1=T1Þorb [39,40]. Likewise, an
observed increase in 1=T1T for a noninteracting 3D DES
with Δ ≈ 15 meV, Bi0.9Sb0.1 [41], is closely related to our
observation of the moderate increase in 1=T1T below 20 K.
A related phenomenon is also observed for the transport
properties: namely, unconventional negative magnetoresist-
ance with a field dependence of the form 1 − ρðBÞ=ρ0 ∝
−

ffiffiffiffi
B

p
[21]. These deviations from an ideal 2D DES are

observed solely for the orbital-related properties at low
temperatures, which suggests a new problem in disordered
orbital physics in DESs. Surprisingly, despite the deviation
of χorb from Eq. (2) below 50 K, σdc approximately scales
with −χorbT, thus maintaining the electromagnetic duality
even at low temperatures where the effect of a disorder
becomes crucial as shown in Fig. 3. This suggests a
possible relationship between the effects of disorder on
χorb and σdc, which results in a less disturbed electromag-
netic duality.
In summary, we identified the organic conductor,

α-ðBETSÞ2I3, as a 2D DES at ambient pressure through
electric and magnetic measurements of σdc, RH, χspin, and

TABLE I. Electromagnetic responses of 3D and 2D DESs,
which capture the salient nature of QED, i.e., the Lorentz
covariance (spacetime symmetry) and charge renormalization.
An electromagnetic duality resulting from the spacetime sym-
metry relates χorb to σðωÞ through Eq. (4). The permittivity
εðq;ωÞ is renormalized at q ¼ ω ¼ 0 as εð0; 0Þ ¼ Z−1

3 ε0, where
Z3 is the charge renormalization factor. The enhancement of
−χorb originates from the enhanced εð0; 0Þ for 3D DESs, whereas
that for 2D DESs takes place with Z3 ¼ 1. For finite temper-
atures, χorb and εð0; 0Þ are given by replacing Δ by T. Details are
given in Ref. [21].

χorb σðω ≫ 2Δ=ℏÞ εð0; 0Þ=ε0 ¼ Z−1
3

3D ∝ lnΔ ≈ðe2=hÞω=v ∝ − lnΔ
2D ∝ −1=Δ ≈e2=hd 1

FIG. 3. Electromagnetic duality of α-ðBETSÞ2I3, where −χorbT
is scaled by σdc for a wide temperature range. The scaling factor is
based on Eq. (3). The solid curve is the calculated −χorbT.
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1=T1 of 13C NMR. The latter two magnetic responses show
negligible electronic correlation, enabling us to study an
ideal characteristics of DES. We found orbital diamagnet-
ism (χorb) only along the interplane direction. We demon-
strate that the equation Tχorb ¼ const holds approximately
for T > 50 K and χspin ∝ T and that small shifts from the
gapless DES are well reproduced by the theory using a
unique parameter, Δ ¼ m�v2, the mass gap for the DES.
We found a unified electromagnetic responses in which
−Tχorb scales with σdc ≈ e2=hd in a wide temperature
range, as shown in Fig. 3, consistent with an electromag-
netic duality that is valid only within the relativistic
framework.
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