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We demonstrate that a spin degree of freedom can introduce additional texture to higher order
topological insulators (HOTIs), manifesting in novel topological invariants and phase transitions. Spin-
polarized mid-gap corner states of various multiplicities are predicted for different HOTI phases, and novel
bulk-boundary correspondence principles are defined based on bulk invariants such as total and spin corner
charge. Those are shown to be robust to spin-flipping perturbations. Photonic realizations of spin-linked
topological phases are demonstrated in engineered systems using pseudospin.
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The interplay between spin and topology has long been
of interest to physicists [1–5]. Shortly after the prediction of
time-reversal (TR) preserving Chern insulators [6], the
concept was extended to spinful electrons, leading to the
prediction [7] and experimental realization of the quantum
spin Hall (QSH) effect [8,9]. The extension to spinful
systems typically involves doubling of the Hilbert space to
include two similar copies of the original spinless system
[7,10], and can have significant effect on the topology of
the system. While the Chern insulator has a Z topological
invariant, a spin Chern insulator possesses a Z2 topological
invariant due to TR and inversion symmetries [11]. The
addition of spin to the system has, therefore, changed its
topological classification.
More recently, these concepts have been extended to

higher order topological insulators (HOTIs) [12–19], and
their photonic and phononic counterparts (PHOTIs) [20–
28]. A HOTI is a d-dimensional topological insulator with a
bulk topological invariant predicting topological states
localized on some of its d − n dimensional terminations,
where n ∈ N and 2 ≤ n ≤ d. HOTIs can support fractional
boundary charges due to a combination of their bulk modes,
edge modes, hinge modes, etc. Wannier centers being
localized at the edges of the unit cell, contributing a
fractional number of electronic charge [12]. This fractional
charge is related to the mode density at the boundaries of the
HOTI and can be measured with regard to the mode density
at the terminations of the bulk [14]. It is natural to ask if
spinfulHOTIs have any emerging topological properties and
classification that distinguish them from their spinless
counterparts. Most of the research of spinful HOTIs has
so far concentrated on the systems with fermionic TR
symmetry [16,17] or time-dependent drive [15].
In this Letter we examine the effects of adding the spin

degree of freedom (DOF) to HOTIs when fermionic TR
symmetry is broken yet bosonic TR symmetry is main-
tained [10,29]. Our analysis also applies to pseudospin
DOFs, such as layer [30–33] and polarization [34–36]. We

use the latter to emulate spinful PHOTIs based on engi-
neered microwave structures. The specific 2D lattice
models and their corresponding periodic electromagnetic
waveguides considered in this Letter possess C6 symmetry,
and are additionally endowed with Kekulé texture
[21,37,38], spin DOF, and a symmetry-preserving spin-
flipping perturbation coupling the spin-↑ and spin-↓
components. The latter will be assumed in the form of
Kane-Mele spin-orbit coupling (SOC) [1]. For spinless
lattice models, such topological crystalline insulators
(TCIs) have been shown to support a HOTI phase with
a quantized fractional corner charge of Qc ¼ 1=2 [39].
Below we demonstrate that when an independent spin

subspace is introduced, two nontrivial phases can emerge: a
phase possessing two quantized spin-polarized fractional
corner charges Q↑;↓

c ¼ 1=2 (spin-HOTI), and a phase
characterized by a single quantized fractional corner charge
Qc ¼ 1=2 (HOTI). While in the absence of SOC the spin-
HOTI phase can be thought of as being independently
topological for each of the spin states [24]; such simple
interpretation is no longer valid in the presence of a finite
spin-flipping SOC. Which one out of these two phases is
realized depends on the strength of the SOC that couples
the two spin states, and on the individual topological
properties of each spin component in the absence of such
coupling. We further demonstrate that the distinct proper-
ties of the spin-HOTI and HOTI phases manifest them-
selves in different multiplicities and spin textures of their
corresponding zero-energy corner states.
Our starting point is the tight binding (TB) model on a

honeycomb lattice schematically shown in Fig. 1(a):

H ¼
X

hiji
t↑inc

†
i↑cj↑ þ

X

hi0j0i
t↑outc

†
i0↑cj0↑ þ

X

hiji
t↓inc

†
i↓cj↓

þ
X

hi0j0i
t↓outc

†
i0↓cj0↓ þ

X

⟪ij⟫αβ

i

3
ffiffiffi
3

p λSOCνijsxαβc
†
iαcjβ; ð1Þ

PHYSICAL REVIEW LETTERS 128, 026801 (2022)

0031-9007=22=128(2)=026801(6) 026801-1 © 2022 American Physical Society

https://orcid.org/0000-0001-7106-7569
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.026801&domain=pdf&date_stamp=2022-01-10
https://doi.org/10.1103/PhysRevLett.128.026801
https://doi.org/10.1103/PhysRevLett.128.026801
https://doi.org/10.1103/PhysRevLett.128.026801
https://doi.org/10.1103/PhysRevLett.128.026801


where ci↑ð↓Þ is the spin-↑ (↓) electron creation operator at
the ith lattice site, νij is þ1 for counter-clockwise direction
next-nearest neighbor terms and −1 for clockwise direction
next-nearest neighbor terms, sxαβ are the matrix elements of
the ŝx Pauli matrix, and λSOC is the strength of SOC
coupling. The first (third) term describes the nearest
neighbor intra unit cell hopping of the spin up (down)
electrons, the second (fourth) term describes the nearest
neighbor inter unit cell hopping of the spin-↑ (↓) electrons,
and the fifth term describes the next-nearest neighbor Kane-
Mele SOC [1].
Numerous works in photonics and phononics have

implemented the first two terms of Eq. (1) [21,26,40–
42] but no implementation of the full Eq. (1) has been
presented yet. While those platforms emulate a Kekulé
lattice distortion (frequently labeled as orbital pseudospin),
giving rise to edge and one-per-corner states, they do not
implement a spinful Kekulé lattice distortion model—a
serious limitation that prevents access to the novel spin-
HOTI topological phase supporting two distinct localized
state per corner as described below. Additional richness of
the spinful model with SOC [Eq. (1)] that cannot be
achieved with existing platforms enables phase transitions
between the trivial, HOTI, spin-HOTI, and QSH phases.
Fourier transforming from the real space to the Bloch

quasimomentum space [43] results in the reciprocal unit
cell depicted in Fig. 1(b), where the high symmetry points
(HSPs) [44] are Γ ¼ ð0; 0Þ, K ¼ ð4π=3=a; 0Þ, M ¼
π=að1; 1= ffiffiffi

3
p Þ and a is the real space lattice constant,

i.e., the distance between neighboring unit cells. All band
structures in this Letter are calculated along the reduced
Brillouin Zone depicted with a dashed blue triangle.
Without loss of generality, we assume that all hopping
amplitudes are positive, and that the energy scale is defined
by setting ðt↑;↓out þ t↑;↓in Þ=2 ¼ 1.
The difference between intercell and intracell hopping

amplitudes, Δ↑;↓ ≡ t↑;↓out − t↑;↓in , determines the topology of
the two uncoupled spin subspaces in the absence of SOC:
each spin component’s subspace behaves independently as
a HOTI for Δ↑;↓ > 0, or a trivial insulator for Δ↑;↓ < 0, as
shown in Fig. 1(c). When both independent subspaces are
in the HOTI topological phase simultaneously, we name the
resulting phase spin-HOTI, which in this case is a some-
what redundant phase that can be viewed as two orthogonal
HOTI copies. The topological phase transitions at Δ↑;↓ ¼ 0

are the consequences of the band inversions between p- and
d-orbital mode profiles [21,38]: the energies of the p-
orbital bands are below (above) the band gap for trivial
(topological) insulators.
The unperturbed spin corner charges Q̃↑;↓

c are separately
defined for each spin subspace [39]. Corner charges can be
calculated based on the symmetry properties of the propa-
gation bands below the band gap at the high-symmetry Γ
and M points of the Brillouin zone [39]:

Q̃↑;↓
c ¼ ð#M↑;↓ − #Γ↑;↓Þ=4 ð2Þ

where #M↑ (#Γ↑) is the number of C2-invariant spin-↑
modes below the band gap at the M (Γ) point (same for
spin-↓ modes).
When the spin components are coupled through the

SOC, the expressions for Q̃↑;↓
c are no longer quantized, and

must be redefined because of the mixing between the spin-
↑ and spin-↓ contents of the propagation bands. Therefore,
we modify the definitions of the corner charges by
weighing the contribution of each band by its spin-↑=↓
content:

Q↑;↓
c ¼ 1

4

X

i
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where jψ iðkÞi is the wave function of a C2-invariant band i
below the band gap at the k ¼ M;Γ points. Since spin is an
intrinsic electron property Eq. (3) can be calculated even
when the spin subspaces are mixed.
It can be shown that Q↑;↓

c defined by Eq. (3) are
quantized at Q↑;↓

c ¼ 1=2 for the spin-HOTI, and at Q↑;↓
c ¼

0 for the trivial phase. Briefly, the probability conservation
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FIG. 1. Spinful HOTI: the tight-binding model and its phase
diagrams. (a) Schematic of the TB model with definitions of
intracell (red lines) and intercell (blue lines) hopping amplitudes.
Black circles: lattice sites; dashed hexagons: unit cells; green
dashed lines: spin-orbit coupling amplitudes λSOC and their signs
(�). (b) Brillouin zone (black hexagon), reduced Brillouin zone
(dashed blue triangle), and high symmetry points of the reciprocal
lattice. (c),(d) Phase diagram at constant λSOC ¼ 0 (c) and λSOC ¼
0.25 (d). Solid curves: bulk band gap closure at λSOC ¼
λthSOCðΔ↑;Δ↓Þ; color bar: Q↑

c for trivial, spin-topological, and
topological (not quantized) phases. Dashed line: spin-degeneracy
Δ↑ ¼ Δ↓ corresponding to quantum spin-Hall phase.
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for all the bands below the band gap ensures that Q↑;↓
c ¼

Q̃↑;↓
c for these two cases. This is due to the lack of cross-

band transitions generated by the C6 symmetry-preserving
SOC: the d (p) orbitals for both spins are on the same side
of the band gap, and the SOC only connects the orbitals of
one spin component to the same orbitals of the other
component (see the Supplemental Material [45] for details).
This conservation of probability is independent of choice of
spin basis, and therefore Eq. (3) can be calculated using any
spin basis with the result unchanged.
On the contrary, Q↑;↓

c corner charges are not separately
quantized in the HOTI phase. The cause of this transition
from either trivial to HOTI (if Δ↑↓ < 0) phase, or from
spin-HOTI to HOTI (if Δ↑↓ > 0) is the band inversion by

the strong SOC coupling satisfying λSOC > λðthÞSOC. Here

λðthÞSOC ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
Δ↑Δ↓

p
is the threshold value of the SOC strength

corresponding to the closing of the bulk band gap, and
followed by band inversion. However, the total spin-

independent corner charge Qc ¼ Q↑
c þQ↓

c ¼ 1=2 remains
quantized in the HOTI phase, thus making it topologically
nontrivial. Phase diagrams in the ðΔ↓;Δ↑Þ space showing
one trivial and two topological (spin-HOTI and HOTI)
phases are shown in Figs. 1(c) and 1(d) for constant λSOC.
The spin-degeneracy region Δ↑ ¼ Δ↓ represented by the
dashed line in Fig. 1(d) corresponds to the fermionic TR
symmetric QSH phase [38,46] embedded in a bosonic TR
symmetric HOTI phase (see Supplemental Material [45]).
To investigate the existence and multiplicity of zero-

energy corner states (ZCSs), we consider an interface
between trivial and topological domains containing a single
120° corner, as shown in the upper-left inset in Fig. 2(a). In
the case when the topological phase is a HOTI, its single
quantized topological chargeQc ¼ 1=2manifests itself as a
single spin-polarized ZCS. The spectrum for such corner-
containing domain wall is calculated using a finite-domain
TB calculation and is shown in Fig. 2(a) (see Table S1 [45]
for the TB parameters). The existence of the ZCS is a direct
consequence of the quantized bulk invariant Qc and of the
chiral symmetry present in a C6 lattice with Kekulé
distortion, both of which are preserved even with finite
SOC (see Supplemental Material [45]).
The existence of the separate quantized spin charges

Q↑
c ¼ Q↓

c ¼ 1=2 in the spin-HOTI phase guarantees a
degenerate pair of ZCSs [see Fig. 2(b)] with distinct spin

textures, as long as Δ↑;↓ > 0 and λSOC < λðthÞSOC. This is in
contrast to the spinless model [39] that only considers Qc
and thus predicts no ZCSs for the spin-HOTI phase. The
localization lengths of the two corner states are generally
not equal, and are determined by the hopping amplitudes,
λSOC, as well as the size of the band gap between the edge
states. The latter can be modified by the choice of hopping
amplitudes along the domain wall [21].

Next, we present a photonic platform that can be used for
emulating a spinfull HOTI described by the Hamiltonian
given by Eq. (1). The structure shown in Fig. 3(a) is
comprised of a photonic crystal (PhC) waveguide made of
perfect electric conductors (PEC) elements sandwiched
between two PEC plates [34–36]: see the Supplemental

FIG. 2. Properties of corner-shaped domain walls between a
topological [(a) HOTI and (b) spin-HOT] and a trivial phase: a TB
model. A corner of a HOTI/trivial (spin-HOTI or trivial) interface
supports one (two) ZCS. Upper-left inset in (a): domain wall
shape. Energy spectra: bulk (blue), edge (green), and corner (red)
modes for the HOTI or trivial (a) and spin-HOTI or trivial
(b) interfaces. Lower-right inset in (a): intensity of the single
ZCS. Upper-left inset in (b): domain wall shape. Lower-right
insets in (b): intensities of the two ZCSs. TB model parameters:
see Table S1 [45].

FIG. 3. Emulation of spinful PHOTIs using a photonic crystal
waveguide with Kekulé distortion. (a) Top and side views of the
PhC unit cell with intercell distance a. (b),(c) Band structures for
PHOTI (b) and spin-PHOTI (c) designs. TE (blue symbols) and
TM (red symbols) are degenerate at the Γ point. (d) Field profiles
of four of the eight modes at z ¼ h=2 of the p and d orbital bands
below the band gap at the Γ point for PHOTI (left column) and d
only spin-PHOTI (right column) for TE (dashed blue box) and
TM (dashed red box) electromagnetic modes. The modes not
shown, indicated by ×2, are degenerate and identical to the ones
shown up to 120° rotation. Parameters: symmetric air gaps
gtop ¼ gbot; see Table S2 [45] for details.
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Material [45] for the geometric parameters of all PhC
designs. The PhC possessesC6 symmetry, thereby allowing
a Kekulé distortion [47]. In the case of symmetric air gaps
(gtop ¼ gbot) between the PhC elements and the plates, the
mid-plane mirror symmetry z → −z ensures that the
electromagnetic modes can be classified as either TE-like
or TM-like, which are decoupled from each other [48]. The
TE (TM) modes are distinguished by having a nonvanish-
ing Hz (Ez) field component at the z ¼ h=2 midplane, as
shown in Fig. 3(d).
In what follows, the TE (TM) nature of the modes will be

used to emulate the ↑ (↓) isospin components, while the
midplane symmetry breaking ðΔg≡ jgtop − gbotj ≠ 0Þ will
be used to emulate the SOC [34,35]. We use the frequency
ordering of the p ¼ ðpx;pyÞ and d ¼ ðdxy;dx2−y2Þ orbitals
with respect to the photonic band gap at the Γ point to
classify the structures as trivial or topological [21,38,40].
Using COMSOL simulations, we designed the unit cells

shown in Fig. 3(a) for two types of PhCs satisfying the
following criteria for the TE (TM) modes: (i) frequency-
degeneracy at the Γ point for both PhCs, (ii) inverted
photonic band structures (topological for one mode, trivial
for the other) for a PHOTI-type PhC shown in Fig. 3(b),
and (iii) similar photonic band structures (topological or
trivial for both modes) for the other type of a PhC. A
PHOTI corresponding to (ii)—trivial TE mode and a
topological TM mode—is shown in Fig. 3(b), while a
spin-PHOTI corresponding to (iii)—topological for both
modes—is shown in Fig. 3(c). Both structures have
symmetric air gaps, and the midplane orbital profiles of
the TE (Hz) and TM (Ez) modes corresponding to the four
bands below the band gap are shown in Fig. 3(d), where the
left (right) column corresponds to a PHOTI (spin-PHOTI)
structure.
To demonstrate that the designed PHOTI and spin-

PHOTI structures emulate the corresponding phases
described by the TB model given by Eq. (1), we provide
a mapping of the photonic model to the TB model in the
Supplemental Material [45] relying on the spatial sym-
metries of the PhC and chiral symmetry [49], as well as
investigating phase transitions produced by the SOC-
emulating air-gap asymmetry Δg ≠ 0 by comparing the
band structures calculated from the TB model shown in
Figs. 4(a) and 4(b) to the first-principles photonic band
structures shown in Figs. 4(c) and 4(d). No photonic band
gap closing occurs in the case of the PHOTI [Fig. 4(d)]. On
the other hand, complete band gap closing for Δg ¼ ΔgðthÞ
is observed for the spin-PHOTI system, as indicated in
Fig. 4(c). Further increase in the effective SOC term
(Δg > ΔgðthÞ) reopens the band gap [10] and induces a
phase transition from the spin-PHOTI to PHOTI phase (see
Supplemental Material [45]).
Next, we demonstrate that interfacing a photonic struc-

ture possessing quantized bulk invariants with a trivial PhC
produces corner states with correct multiplicities predicted

by the TB model of spinful HOTIs. For the PHOTI shown
in Fig. 3(c), we indeed find a single corner state marked by
an arrow in Fig. 4(f) and plotted at a 120° corner in the
inset. We used edge roughening [21] to increase the edge
band gap size (see Supplemental Material [45]).
Photonic analog of the degenerate ZCS pairs predicted

by the TB model is constructed by interfacing a trivial PhC
with a spin-PHOTI that was chosen to have the same
parameters as the structure shown in Fig. 3(c), but a smaller
air-gap asymmetry Δg < ΔgðthÞ. Indeed, two nearly degen-
erate corner states marked with arrows in Fig. 4(e) were
found. Field intensities jEj2 and jHj2 of the two corner
states plotted in the inset show distinct spatial profiles and
polarizations, which is equivalent to having spin texture.
The ratio of the average values at the mid-plane of Ez and
Hz

ffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p
determines the pseudospin texture of the ZCSs,

FIG. 4. Comparison between HOTIs based on the TB model
and their photonic counterparts: bulk bands (a)–(d) and corner
states (e)–(f). Left column: spin-HOTI (a) and spin-PHOTI
(c) phases. Right column: HOTI (b) and PHOTI (d) phases.
(a) Spin-HOTI bands without (with) the SOC term: solid (dashed:
λSOC ¼ λthSOC) lines. (b) Same as (a), but for HOTIs. (c) Photonic
band structure for a spin-PHOTI phase with Δg ¼ ΔgðthÞ. Inset:
top view of the unit cell. (d) Same as (c), but for a PHOTI phase.
p; d orbitals are marked with arrows. (e) Photonic corner energy
spectrum of a spin-PHOTI and (f) HOTI interfacing a trivial
phase at 120° corner. Insets: jEj2 [top of (e) and bottom of (f)] and
jHj2 [bottom of (e)] profiles of the corner modes. Parameters:
Table S2 [45].
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where μ0 and ε0 are the free space permeability and
permittivity, respectively.
Several differences between the predictions of the

simplified TB model and the results of the continuum
electromagnetic calculation are notable. The edge modes
shown in Fig. 4(e) and (f) as green dots appear only in the
lower half of the bulk photonic band gap (compare with
Fig. 2(a),(b)) due to slight mismatch of the band gaps
between the trivial and PHOTI phases. This mismatch is
also responsible for the spectral shift of the corner state
away from the mid-gap frequency and the lack of exact
degeneracy between the corner states.
In summary, we have investigated higher-order topo-

logical insulating phases on a hexagonal lattice with spin-
dependent Kekulé textures. When spin-flipping perturba-
tions, such as spin-orbit coupling, are included in a tight-
binding model, two types of insulating topological phases
are predicted: a spin-HOTI possessing two independent
fractionally quantized bulk invariants Q↑↓

c , and a HOTI
possessing just one such invariant Qc ¼ Q↑

c þQ↓
c . A bulk-

boundary correspondence between such bulk invariants and
the existence of corner states is established, and their
photonic analogs are proposed. Our results present an
opportunity for future development of novel photonic
devices with active switching of their topological corner
states by controlling the midplane mirror symmetry,
thereby inducing a topological phase transition.
Condensed matter realization of the spin-HOTI phase with
Δ↑ ¼ Δ↓ is possible using a platform such as CO mole-
cules deposited on Cu [18]. An effective SOC can be
introduced by applying a magnetic field, which would
introduce a phase transition to a quantum Hall phase
instead of a QSH phase.
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