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The role of self-generated zonal flows in the collisionless trapped-electron-mode (CTEM) turbulence
is a long-standing open issue in tokamak plasmas. Here, we show, for the first time, that the zonal flow
excitation in the CTEM turbulence is formally isomorphic to that in the ion temperature gradient
turbulence. Trapped electrons contribute implicitly only via linear dynamics. Theoretical analyses further
suggest that, for short wavelength CTEMs, the zonal flow excitation is weak and, more importantly, not an
effective saturation mechanism. Corresponding controlling parameters are also identified theoretically.
These findings not only offer a plausible explanation for previous seemingly contradictory simulation
results, but can also facilitate controlling the CTEM instability and transport with experimentally accessible
parameters.

DOI: 10.1103/PhysRevLett.128.025003

Zonal flows (ZFs) are azimuthally symmetric sheared
flows spontaneously excited by small scale fluctuations.
They are common in both nature and laboratory, and are
crucial for the self-regulation of turbulence and transport.
In tokamak plasmas, the drift wave-zonal flow paradigm, as
one of major achievements of modern plasma turbulence
theory, has been established after intensive studies of the
ion temperature gradient (ITG) turbulence (see [1] and
references therein). At present it has been widely accepted
that ZF-induced energy transfer from the unstable mode to
stable modes provides the primary saturation mechanism
for ITG turbulence [2,3]. However, noting that fusion
power increases as the square of density and fusion
produced alpha particles mainly heat electrons, the colli-
sionless trapped-electron-mode (CTEM) turbulence may
show more pronounced effects in future burning plasmas
such as ITER [4]. That is, in addition to playing a key role
in particle transport, CTEM also significantly contributes to
electron heat transport in ITER scenarios with dominant
electron heating and/or with comparable electron and ion
heating. Although it has long been recognized that the
CTEM turbulence is of theoretical and practical interests,
the significance of ZF in regulating the CTEM turbulence,
nevertheless, is still being actively debated. Numerical

studies have shown that the role of ZF in CTEM turbulence
is parameter sensitive, with different controlling parameters
identified from different simulations [5–14]. Specifically,
the ZF excitation is empirically found to be sensitive either
to the ratio between electron and ion temperatures (τ),
magnetic shear (s), and electron temperature gradient scale
length (rte) [6–9]; or to ηe (the ratio between gradients of
the density and electron temperature) only [13]. It is
conjectured that the importance of ZF may be connected
with the linear stability of CTEM [13], but the underlying
physics mechanism is as yet unknown. The need for a clear
physical picture of CTEM ZF interplay is thus the main
motivation for this work.
In this Letter, we employ the nonlinear gyrokinetic

theory [15] and demonstrate analytically that the ZF
excitation in CTEM turbulence is formally isomorphic to
that in ITG turbulence. Interestingly, although the turbu-
lence is driven by trapped electrons, the nonlinear CTEM
ZF interplay is governed by ions and circulating electrons.
Trapped electrons, in contrast, only enter implicitly through
linear physics. Therefore, linear CTEM properties play a
unique role in determining the importance of ZF.
Theoretical analysis elucidates that ZFs are important in
saturating the long wavelength CTEM turbulence, consis-
tent with simulation results [5,7–9,11–14]. For the short
wavelength CTEM turbulence (to be defined later), how-
ever, ZF excitation is weak and, more significantly, not an
effective saturation channel. Linear short wavelength
CTEMs are thus revisited analytically. It is found that
the short wavelength CTEM instability without ZF scatter-
ing channel is essentially of two types. One is kinetically
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excited via toroidal precessional resonance. In this case, the
instability threshold depends on the aspect ratio between
major and minor radii, the temperature ratio, magnetic
shear, and electron temperature gradient; consistent with
previous numerical simulation observations in Refs. [6–9].
The other case is a fluidlike interchange-driven instability
set by ηe in the steep density gradient regime, explaining
thereby the simulation results in Ref. [13]. We note that
while this work analyzes CTEMs in tokamaks, the theo-
retical approach presented here could conceivably be
applicable toward clarifying the role of ZF in other plasma
turbulence; e.g., shear Alfvén waves excited by either
energetic [16] or thermal [17] particles, where wave-
particle interactions of different particle species occur on
distinctively separated spatial scales.
We consider an axisymmetric, low-β (the ratio of kinetic

to magnetic pressure), large aspect-ratio (ϵ ¼ r=R0 ≪ 1)
tokamakwith the major radiusR0, and the radial (r, distance
from the magnetic axis), poloidal (θ), and toroidal (ζ) field-
aligned coordinates. The electrostatic fluctuation is taken to
be coherent and consists of the pump CTEM A0, ðω0; k0Þ,
upper and lower sideband CTEMsA�, ðω�;k�≡k0�kzêrÞ,
and a zonal mode Az, ðωz; kzêrÞ. For CTEMs, since the
instability drive peaks on the outboard midplane, we can
assume eigenmodes are mainly formed within jθj ≤ π, and
adopt the strongly ballooning representation [18]

fϕk; δhkg ¼ Ake−inqθke−inðζ−qθÞfΦkðθÞ; δHkðθÞg: ð1Þ

Here, qðrÞ stands for the safety factor, Ak denotes the
amplitude, and nq0θk is the radial envelope wave number.
For simplicity, we take θk ¼ 0 for the pump and kz ¼ nq0θz
for the zonal mode, hence the radial envelope wave number
of upper (lower) sideband becomes �kz. The nonlinear
equation for the electrostatic potential ϕk is the quasineu-
trality condition:

ð1þ τÞϕk þ hδhe;kiv − hJkδhi;kiv ¼ 0; ð2Þ

where τ ¼ Te=Ti is the temperature ratio between electron
and ion, h� � �iv denotes integration in velocity space, and
Jk ¼ J0ðk⊥ρiv⊥Þ is a Bessel function accounting for the
finite Larmor radius effect of ions, with ρi being the thermal
ion Larmor radius and velocity being normalized to the
thermal velocity. The nonadiabatic response δhj;k, mean-
while, obeys the nonlinear gyrokinetic equation [15]

Lj;kδhj;k − ðωþ ωt
�jÞF0Jk

qjϕk

Tj

¼ ic
B

X
k2¼k−k1

f½Jk1ϕk1 ; δh
�
j;k2

� þ ½Jk2ϕ�
k2
; δhj;k1 �g: ð3Þ

Here, j ¼ i, e denotes particle species, the charge
qi ¼ −qe ¼ e, and Lj;k ¼ ωþ ωt þ ωdj is the phase-space

propagator in toroidal geometry, in whichωt¼ iðvk=qR0Þ∂θ

is the transit frequency, and ωdj ¼ 2kθv2kG=ðωcjR0Þ is the
curvature drift model for magnetic drift frequency [19], with
G≡cosθþsðθ−θkÞsinθ, kθ¼nq=r, and ωcj¼qjB=ðcmjÞ.
ωt
�j ¼ ω�j½1þ ηjðv2 − 3=2Þ� is the diamagnetic frequency,

whereω�j ¼ kθcTj=ðqjBrnÞ, ηj ¼ rn=rtj, and rn and rtj are,
respectively, the density and temperature scale lengths. For
clarity of the physics presentation, we set ηi ¼ 0 to inhibit
ion driven modes. F0 is Maxwellian. We have also defined
the Poisson bracket ½f; g� ¼ iðkθ;ff∂rg − kθ;gg∂rfÞ for the
E × B nonlinearity on the right-hand side, with kθ;f (kθ;g)
denoting the poloidal wave number kθ of f (g).
For trapped electrons, Eq. (3) can be further reduced to

the nonlinear bounce kinetic equation [20]:

Lte;kδHte;k þ ðωþ ωt�eÞF0

eΦ̄k

Te

¼ ic
B

X
k¼k1−k2

f½Φ̄k1 ; δH
�
te;k2

� þ ½Φ̄�
k2
; δHte;k1 �g; ð4Þ

where ð� � �Þ ¼ ½H ð� � �Þdθ=vk�= H dθ=vk denotes bounce or
transit averaging [21]. The propagator Lte;k ¼ ω − ω̄de,
with the precessional frequency ω̄de ¼ jω�ejϵnv2H,
ϵn¼rn=R0, andH≃0.83sþ0.41 for s ∼ 1 [22,24] typically
employed in simulations [5–14].
Although linear CTEMs have been extensively explored

in the literature since 1970s [24–26], it is nevertheless
crucial to discuss the linear properties useful for nonlinear
analysis. For this, the eigenmode equation is derived from
linearized kinetic equations as [27]

D̂Φ≡ ð1þ τÞΦ − hJ0L−1
i ½ðωþ ωt

�iÞτF0J0Φ�iv
− hL−1

te ½ðωþ ωt�eÞF0Φ̄�iv ¼ 0: ð5Þ

Equation (5) distinguishes two types of CTEMs. The long
wavelength mode ½k2⊥ρ2i ∼OðϵÞ� comes from a balance
between the adiabatic term (1þ τ) and the nonadiabatic ion
response (the second term), which requires that the non-
adiabatic trapped-electron response is subdominant; while
the short wavelength mode [k2⊥ρ2i ∼Oðϵ−1Þ] is defined here
as the result of a balance between the adiabatic term and
nonadiabatic trapped-electron response, implying a sub-
dominant nonadiabatic ion contribution.
As to the excitation of ZF by CTEM turbulence, we

may follow the analyses of Refs. [2,28,29]. The particle
response to ZF can be solved from Eq. (3), by employing
the separation in time scales between the low frequency
zonal flow and the bounce (or transit) frequency of guiding-
center motion [28]. The quasineutrality condition of zonal
mode then becomes

ð∂t þ γzÞχiAz ¼ kzρiðAþA�
0βz;þ − A0A�

−β
�
z;−Þ: ð6Þ
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Here, frequencies and amplitudes are normalized to jω�ej
and ðTe=eÞðρi=rnÞ, respectively. γz is the collisional ZF

damping rate. χi ¼ τð1 − hhF0JzeiQe−iQJziiv;sÞ quantifies
the classical and neoclassical polarization of ions [28],
with Q ¼ kzvkq=ðωciϵÞ accounting for the ion finite drift
orbit width effect, and h� � �is being the average over
magnetic flux surface. The nonlinear coupling coefficient

is given by [29] βz;� ¼ hhJkzeiQe−iQðJk�Φk�δH
�
i;k0

Þiiv;s−
hhΦk�Jk0δH

�
i;k0

iiv;s − hhJkzeiQe−iQðJk0Φ�
k0
δHi;k�Þiiv;s þ

hhΦ�
k0
Jk�δHi;k�iiv;s. Consistently, with θk ¼ 0 for the

pump mode, one can show that βz;þ ¼ βz;− ≡ βz for
sidebands of the same branch by virtue of the
up-down symmetry [25]: Φkþ ¼ Φk− and ωkþ ¼ ωk− .
Since the characteristic CTEM frequency is much smaller
than the electron transit frequency, the circulating
electron response to CTEMs is adiabatic. The corres-
ponding electron contribution to βz;� is thus linearly
proportional to hh½ϕk� ;δh

�
te;k0

�iiv;s−hh½ϕk� ;δh
�
te;k0

�iiv;s þ
hh½ϕ�

k0
;δhte;k��iiv;s−hh½ϕ�

k0
;δhte;k��iiv;s. Meanwhile, recall-

ing that the bounce kinetic limit holds for trapped
electrons, it is possible to show that hh½ϕk1 ; δh

�
te;k2

�iiv;s ¼
hh½Φ̄k1 ; δH

�
te;k2

�iiv;s ¼ hh½ϕk1 ; δh
�
te;k2

�iiv;s [20]. As a conse-
quence, trapped electrons do not contribute to βz;�.
The nonlinear terms recover the well-known Charney-
Hasegawa-Mima nonlinearity in long wavelength limit
[30]. It is, therefore, clear that the ZF equation is only
set by ion dynamics, as that in the familiar ITG turbulence.
Specifically, assuming k2⊥0ρ

2
i ∼ k2zρ2i ≪ 1, it is not hard

to show that Eq. (6) is mathematically identical to the ZF
equation in [2,29].
For CTEM sidebands, the nonlinear coupling to the

pump and ZF can be straightforwardly derived by closely
following Refs. [2,29], yielding

ð∂t þ iΔþ − γþÞAþ ¼ −kzρiαþA0Az=ωþ∂ωDþ; ð7Þ

and

ð∂t þ iΔ− − γ−ÞA− ¼ kzρiα−A0A�
z=ω−∂ωD−: ð8Þ

Here,Δ� ¼ ω� − ω0 is frequencymismatch, γ� is sideband
linear damping rate, andDk represents the real part of linear
dispersion function hΦ�

kD̂Φkis. The mode coupling α� ≡
αe� þ ταi� here originates fromboth theNavier-Stokes type
E × B nonlinearity αe� ¼ ð1 − ffiffiffiffiffi

2ϵ
p ÞhΦ�

k�
Φk0is via circu-

lating electrons; and the generalized Reynolds stress αi� ¼
hΦ�

k�
ð1 − hJk�Jk0JkzeiQe−iQF0ivÞΦk0is due to ions. While

the former dominates in the longwavelength limit, they have
comparable magnitudes for short wavelength modes.
Similarly, the pump CTEM equation is readily

obtained as

ð∂t − γ0ÞA0 ¼ kzρi½αþAþA�
z − α−A−Az�=ω0∂ωD0: ð9Þ

From Eqs. (7)–(9), the nonlinear terms are formally
independent of trapped electrons, and possess the con-
servation law of the wave energy of CTEM plasmons
Ek ¼ ωk∂ωDkjAkj2:

ð∂t − 2γ0ÞE0 ¼ ð2γþ − ∂tÞEþ þ ð2γ− − ∂tÞE−: ð10Þ

The weak turbulence theory introduced so far applies for
scatterings to the linearly stable domain in both dominant
[2] and subdominant [3] branches. For a direct comparison
with previous ITG results [2,29], we now restrict consid-
eration to the mode coupling in the same branch and
analyze the modulational instability with a constant pump.
Letting Δs ¼ Δ�, γs ¼ γ�, D ¼ D0 ≃D�, and α ¼ α�,
Eqs. (6)–(8) yield the desired nonlinear dispersion relation

γ2mðγs − ΓzÞjA0j2ReðβzÞ
ðΓz þ γzÞ½ðΓz − γsÞ2 þ Δ2

s �
¼ 1; ð11Þ

with Γz ≡ ∂t and γ2m ≡ 2k2zρ2i α=ðχiω0∂ωDÞ. Equation (11)
admits a threshold amplitude of the pump,

jA0;cj2 ¼ γzγsð1þ Δ2
s=γ2sÞ=γ2mReðβzÞ; ð12Þ

above which the ZF growth rate can be expressed, for
Γz > jγsj, γz, as

2Γz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγs þ γzÞ2 − 4½ReðβzÞγ2mjA0j2 − γzΔ2

s=γs�
q

þ ðγs − γzÞ: ð13Þ

Similarities with the ITG driven zonal flow [2] become
evident. Therefore, the CTEM turbulence and ITG turbu-
lence are formally isomorphic in ZF excitation. The
nonlinear dynamics is governed by ions and circulating
electrons. The trapped-electron contribution, on the other
hand, only enters implicitly through linear physics. For this
reason, linear CTEM properties are expected to play a
determinant role in the ZF excitation. This explains the
empirical observation from gyrokinetic simulations that
the role of ZF appears to be connected to linear CTEM
properties [13].
Equations (12) and (13) also elucidate that the nonlinear

coupling coefficient βz is crucial for ZF excitation. Noting
that the spectrum of long wavelength CTEMs has a similar
scale to that of ITGs [24], it is straightforward to show that
α≃1−

ffiffiffiffiffi
2ϵ

p
and ω0≃1=ð1þτbi0Þ with bi0 ¼ k2⊥0ρ

2
i =2 ≪ 1,

the coefficient βz can then be easily computed as [2]

βz ≃ −ð1=ω0 þ τÞk2zρ2i =2: ð14Þ

Substituting Eq. (14) into Eqs. (12) and (13), one readily
concludes that both the threshold jA0;cj2 and the ZF growth
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rate Γz in long wavelength CTEM turbulence are compa-
rable to those in ITG turbulence [2]. That is, the CTEM ZF
interplay occurs on a time scale similar to that of ITG
turbulence, and, thus, is expected to play important roles in
saturating the long wavelength CTEM turbulence, as
observed by gyrokinetic simulations [5,7–9,11–14]. The
generic parameter dependence of ZF effects, however, is
beyond the intended scope of the current study, since an
adequate modeling of long wavelength CTEM spectrum is
still lacking.
Conversely, the nonlinear coupling coefficients for short

wavelength modes (bi0 ≫ 1) can be evaluated, after some
straightforward algebra, as α ≃ 1þ τ and

βz ≃ −
�
τð1þ τω0Þk2zρ2i
2

ffiffiffi
π

p
k3⊥0ρ

3
i

jΦk0 j2
4ϵnG

Zð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τω0=4ϵnG

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τω0=4ϵnG

p
�

s
; ð15Þ

which is Oðπ−1=2k−3⊥0ρ
−3
i Þ smaller than that in Eq. (14). In

deriving Eq. (15), we have neglected the transit frequency
in the ion propagator Li;k, and assumed k2zρ2i ≪ 1, since the
short wavelength ZF has a strong polarization shielding
effect χi ≃ τ and is more difficult to excite. Z is the usual
plasma dispersion function. A comparison with the long
wavelength CTEM case reveals that the value of jA0;cj2 is
enhanced by at least Oðπ1=2k3⊥0ρ

3
i Þ for a fixed k2zρ2i .

Physically, this phenomenon is due to the fact that, in
the short wavelength limit, the fast ion gyromotion can
average out fluctuations and thus decouple ZF from
CTEMs. Therefore, the ZF excitation becomes much
weaker in the short wavelength CTEM turbulence, con-
sistent, again, with numerical simulation results [13].
Now the key issue is to determine the stability of short

wavelength CTEMs. For this purpose, we explore the
eigenmode equation (5) in the adiabatic ion limit [22,25]

ð1þ τÞΦþ
ffiffiffiffiffi
2ϵ

p
T
Z

1

sin2θ
2

dκ2Φ̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − sin2 θ

2

q ¼ 0; ð16Þ

where the bounce averaged potential is Φ̄ ¼Rþθb
−θb Φdϑ=½4KðκÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − sin2ðϑ=2Þ

p
�, with K the complete

elliptic integral of first kind and θb ¼ 2 sin−1 κ the turning
point; and T¼f2T1½ωð1−ηe=ϵnHÞ−1�þηeð3T1−1Þg=ϵnH,
with T1 ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω=ϵnH
p

Zð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=ϵnH

p Þ accounting for
the precessional resonance. Solving Eq. (16) numerically
yields the most unstable mode Φk0 ≃ ð1þ cos θÞ=3π and
an algebraic dispersion relation

λ0ð1þ τÞ þ
ffiffiffiffiffi
2ϵ

p
T ¼ 0; ð17Þ

where λ0 ≃ 1.2, Assuming the linear marginal stability is
achieved at a critical real frequencyωcr, the threshold ηe can
then be derived by setting the real and imaginary parts of

Eq. (17) to zero. We find, for modes propagating in electron
diamagnetic direction (ωcr > 0),

ηe;c1 ¼ 2ϵn=3ϵnc; ð18Þ

with ϵnc ≡ 2
ffiffiffiffiffi
2ϵ

p
=½3Hλ0ð1þ τÞ�, and the critical real fre-

quency ωcr1 ¼ 3ðϵn − ϵncÞH=ð2 − 3ϵncHÞ. Moreover,
according to Eq. (5), self-consistency with the ordering
jhJ0L−1

i ½ðωþ ωt
�iÞτF0J0�ivj ≪ ð1þ τÞ requires that, in the

τω≫ϵn limit, ω≫Γ0=ð1þτ−τΓ0Þ, with Γ0 ¼ I0ðbiÞe−bi
and I0 a modified Bessel function. Including the higher-
order nonadiabatic ion term, the linear growth rate near
marginal stability can be obtained iteratively from
Eq. (5) as

γ0 ¼
ImðT−1

1 Þϵ2nH2

ϵnH − ηe;c1

�
ηe − ηe;c1
2ϵnH

þ ð1þ τωcr1ÞΓ0

2
ffiffiffiffiffi
2ϵ

p
λ−10 ωcr1

�
: ð19Þ

Therefore, the mode is kinetically excited via the finite
toroidal precessional resonance, and the nonadiabatic ion
correction is destabilizing.
The expression for ωcr1 implies that the positive fre-

quency assumption will break down for small ϵn < ϵnc. In
this case, by expanding Eq. (17) around jωcr=ðϵnHÞj ≪ 1,
one finds

0 ¼ 6ϵncð2 − 4ηe þ ϵnHÞξ2 − 3
ffiffiffi
π

p
ϵncð2 − 3ηeÞξ − 2ϵn

þ 6ϵncð1 − ηeÞ; ð20Þ

with ξ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ωcr=ðϵnHÞp

. Thus, the CTEM considered here
is a fluidlike interchange-driven instability [21], with the
following marginal stability condition

ηe;c2 ¼
8

9π− 64

�
3π

4
− 6þ

�
4ϵn
3ϵnc

− ϵnH

	

−
��

3π

4
− 6þ

�
4ϵn
3ϵnc

− ϵnH

	�
2

−
�
9π

4
− 16

	

×

�
π

4
− 2þ

�
4ϵn
3ϵnc

ð2þ ϵnHÞ− ϵnH

	�

1=2



: ð21Þ

The critical real frequency is given by ξcr2 ¼
ffiffiffi
π

p ð3ηe − 2Þ=
ð16ηe − 8 − 4ϵnHÞ.
From Eq. (18), it is instructive to note that the system

exhibits a striking feature that when ϵn > ϵnc, the funda-
mental threshold in Eq. (18) is a critical temperature gradient
rather than an ηe. Consequently, noting the expression of ϵnc,
the marginal stability condition is set by the parameters ϵ, τ,
rte, and s, consistent with numerical results [5–12]. On the
contrary, when the density profile is sufficiently steep such
that ϵn < ϵnc, the interchange-driven mode becomes unsta-
ble above a certain critical ηe;c2. Especially in the ϵn ≪ ϵnc
limit, the marginal condition (21) renders ηe;c2 ≃ 1.165
regardless of other parameters. Note that for current
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parameters, the nonuniformity gradient remains weak such
that one can ignore global profile variations and subdomi-
nant modes in deriving Eq. (17) [22,31].
Confirmation that the adiabatic ion assumption captures

the essential physics of short wavelength CTEMs can be
obtained by solving Eq. (17) numerically and comparing the
results with existing simulations. Figure 1 shows the
resultant stability diagram versus the density and temper-
ature gradient scale lengths for parameters in Ref. [13].
Three different regions can be identified: the white region is
stable to short wavelength CTEMs, while the blue (red)
region is unstable to modes propagating in ion (electron)
diamagnetic direction. It also validates the analytical mar-
ginal stability conditions. As seen in Fig. 1, the marginal
stability is indeed set by a critical ηe for steep density
gradient plasmas with ϵn < ϵnc, whereas it corresponds to a
critical rte=R0 for ϵn > ϵnc. Remarkably, these features are
in both qualitative and quantitative agreement with simu-
lation results (see Fig. 1 in Ref. [13]).Moreover, as ηe moves
across the threshold from the blue (red) to white region, one
would expect that long wavelength modes eventually
dominate the dynamics and ZFs become increasingly more
important, as observed in simulations [13].
Under the assumption of adiabatic ions, the linear

dispersion relation, Eq. (17), is independent of the toroidal
mode number. In this scenario, a broad spectrum of
short wavelength CTEMs is expected, extending from
jkθρij≳ 1 to jkθρej ≃Oð1Þ, until the adiabatic approxima-
tion of circulating electrons becomes invalid ultimately.
Therefore, once excited, the short wavelength CTEM
turbulence characterized by weak ZF excitation will have
a broad energy-containing spectrum.
Perhaps the most significant property of short wave-

length CTEMs is that they can exist with little stabilization
due to zonal flows. More specifically, noting that short
wavelength CTEMs arise from the balance between the
adiabatic term and the nonadiabatic trapped-electron
response, and trapped electrons tend to bounce along
magnetic field lines, the eigenmode equation (5) is, in
the lowest-order adiabatic ion limit, essentially independent

of the radial envelope modulation (θk) effect. Therefore, in
contrast to the ITG case, the short wavelength CTEM can be
locally excited without a short radial wavelength stable
domain in the dominant branch. Meanwhile, owing to the
Hermitian nature of Eq. (16), the mode structures of different
branches are orthogonal [22]. Thus, besides the aforemen-
tioned small βz;�, the coefficients α� vanish for the coupling
between different branches, and ZFs can barely be excited in
this scenario. Given that, as inferred from Eq. (10), the
damping of driving mode is due to scatterings to the linearly
stable domain in either dominant [2] or subdominant [3]
branches, one can conclude that ZF excitation will not be an
effective saturation channel for short wavelength CTEMs.
In summary, we have demonstrated the isomorphism

between CTEM turbulence and ITG turbulence in zonal
flow excitation. The nonlinear CTEM ZF interplay is
determined by ions and circulating electrons. Trapped
electrons, due to their negligible finite drift orbit width
and Larmor radius effects, only enter implicitly via linear
physics. The linear properties of CTEM, therefore, play a
fundamental role in ZF excitation. While ZF scattering can
be important in saturating long wavelength CTEMs, it is
found that short wavelength CTEMs can exist with little
stabilization due to the zonal flow excitation, and, thereby,
renders the conventional drift wave-zonal flow paradigm
invalid here. Controlling parameters of the short wave-
length CTEM instability are also identified analytically.
This new understanding, thus, provides a plausible explan-
ation for the seemingly contradictory features observed in
previous simulations. Finally, we remark that current
results also carry significant implications to tokamak
experiments. In particular, the short wavelength CTEM
turbulence could be a candidate to explain the observed
insensitivity of electron heat transport to E × B shearing
rate as well as the decoupling of the electron thermal
diffusivity and the particle diffusion, due to the ambipo-
larity [32]. Equations (18) and (21), meanwhile, can be
utilized to identify the experimentally accessible parame-
ters and thus control the spatiotemporal scale of CTEM
turbulence. It may pave a way for proactively controlling
CTEM-driven electron transport and optimizing fusion
plasma performance.
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