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Recent experiments demonstrate how a soluble body placed in a fluid spontaneously forms a dissolution
pinnacle—a slender, upward pointing shape that resembles naturally occurring karst pinnacles found
in stone forests. This unique shape results from the interplay between interface motion and the natural
convective flows driven by the descent of relatively heavy solute. Previous investigations suggest
these structures to be associated with shock formation in the underlying evolution equations, with the
regularizing Gibbs-Thomson effect required for finite tip curvature. Here, we find a class of exact solutions
that act as attractors for the shape dynamics in two and three dimensions. Intriguingly, the solutions exhibit
large but finite tip curvature without any regularization, and they agree remarkably well with experimental
measurements. The relationship between the dimensions of the initial shape and the final state of
dissolution may offer a principle for estimating the age and environmental conditions of geological
structures.
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Ever-changing geological features on this planet never
fail to capture our imagination and inspire new scientific
advances. Often, striking features appear when fluid and
solid interact, ranging from centimeter scale pebble stones
[1,2] to the kilometer scale karst terrains [3,4]. Even
planetary-scale plate tectonics are believed to have such
a fluid-structure interaction origin [5–8].
The direct study of geophysical structures presents unique

challenges owing to the vast range of scales, along with the
limitation of only seeing the current state. On the other hand,
laboratory-scale experiments combined with judicious
physical models have proven valuable in explaining certain
formations [9,10], like the growth of icicles [11], river
meandering [12–14], the formation of stalactites and sta-
lagmites [15–17], meteor ablation [18], and plate tectonics
[5–8]. In this Letter, we investigate one such geomorpho-
logical problem, namely, the formation of karst pinnacles
[3,19]. We will demonstrate the unusual shape dynamics that
result in convergence to a morphological attractor.
Commonly seen in South Asia and the island of

Madagascar [20,21], Fig. 1(a) shows the typical shape of
the karst pinnacles that comprise stone forests. While their
origins remain unclear, studies have related such pinnacles
to the dissolution process [4,19,22], as many of these rocks
were once immersed under water, and the rock material is
slightly water soluble. Two questions naturally arise: How
does the rock evolve into individual pinnacles? Why does
each pinnacle exhibit the common feature of a sharp apex?

Aimed at addressing such questions, recent experiments
employed lab-scale soluble objects to recreate the stone
forests purely from the perspective of dissolution and fluid
dynamics [23]. These experiments show stone forests to
manifest from a single porous, soluble block, highlighting
the sharpening of each karst pinnacle as the key to such
formations. In these and other [24] experiments, no external
flow is imposed, rather the transport of relatively heavy
solute sustains a natural convective flow that drives shape
evolution.
Huang et al. and Pegler and Wykes proposed a

boundary-layer based model capable of predicting sharp-
ening [23,25]. Notably, the model reduces to a single
integro-PDE that governs shape evolution, denoted here as
the sharpening equation (SE). Initial numerical evidence
and scaling analysis of the SE suggested shock formation
and finite-time blowup of the tip curvature [23]. Likewise,
similarity solutions of a matched-asymptotic approxima-
tion predict unbounded growth of tip curvature for certain
initial conditions [25,26].
Figure 1 shows experimental images of dissolving planar

and axisymmetric bodies (see Ref. [23] for experimental
details). Measurements of the tip curvature indeed increase
over time, as seen in Figs. 1(b) and 1(c), but interestingly
give no clear indication of singular behavior. To reconcile
these observations, previous studies appealed to the
thermodynamic Gibbs-Thomson (GT) effect [27,28],
which regularizes the SE and limits the curvature growth.
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However, the strength of the GT term used in previous
simulations was at the high end of the range estimated from
physical considerations (1–10 μm) [23], thus calling into
question whether this term accurately modeled a physical
effect or was simply acting to regularize the numerics. For
context, the experiments shown in Fig. 1 reach a final tip
radius of 60 μm, suggesting that the GT effect is secondary.
As such, fundamental questions remain: Does the SE
support geometric shock formation? Is there a blowup in
tip curvature, and, if so, is the blowup only limited in
practice by microscale thermodynamics?
Here, we resolve these and other questions by finding a

class of exact solutions to the SE in two and three
dimensions that serve as attractors for the shape dynamics.
The solutions exhibit large, but finite, tip curvature,
indicating that the GT effect is not needed to regularize
sharpening. Improved numerical methods, specially tail-
ored to the hyperbolic nature of the SE, show how initially
convergent characteristics bend to avoid crossing and
eventually straighten in pursuit of the attracting morphol-
ogy. Revisited experiments confirm the convergence to
these exact solutions, thus raising the possibility of using
the solutions to infer properties of natural structures.
The model.—In accordance with Fick’s law, a soluble

interface retreats with normal velocity proportional to the
gradient of the solute field Vn ∝ ∇c · n [2,29,30]. These
dynamics can be greatly complicated by the presence
of a fluid flow, which significantly distorts the field c
and alters local gradients. The flow may be forced
externally [1,31–37] or driven by buoyancy variations
[23,24,38], as in the present study. The evolution of flow,
solute, and body shape are thus inextricably linked.
Because of the large Schmidt and Grashof numbers

(Sc ∼ 103 and Gr ∼ 109, see Supplemental Material [39])
of the pinnacle experiments, these convective flows are
confined to narrow boundary layers, enabling an explicit
expression for the 2D interface velocity [23,40]:

Vn ¼ −a cos13 θ
�Z

s

0

cos
1
3 θds0

�
−1
4 ð1Þ

where the surface tangent angle θ ¼ θðs; tÞ is parameter-
ized by the arclength s from the apex, as illustrated in
Fig. 2(c). The constant a ≈ 10−7 m5=4=s contains all
material and fluid properties. For simplicity, we focus on
the 2D case in this Letter, with analogous analysis for
axiysymmetric (3D) objects available in the Supplemental
Material [39].
The θ-L formulation [30,41–43] offers a single, scalar

equation that fully describes shape evolution:

∂θ
∂t ¼

∂Vn

∂s þ Vs
∂θ
∂s : ð2Þ

As above, θ represents the surface tangent angle, and
the Cartesian coordinates can easily be recovered from
ðd=dsÞðx; yÞ ¼ ðsin θ; cos θÞ. The artificial tangential
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FIG. 2. Simulating dissolution-induced sharpening. (a) Evolu-
tion of the initial shape θ ¼ arccot s=l in two dimensions.
(b) Zooming in near the apex illustrates the strong sharpening
effect. (c) Model schematic. (d) Profiles of the tangent-angle
θðs; tÞ show a steep gradient develop near the apex, s ¼ 0,
consistent with (e) a tip curvature that increases by 5 orders of
magnitude. (f) Characteristic curves show contours of constant θ,
with the physical trajectories shown in (a) with red.
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FIG. 1. Dissolution-induced sharpening. (a) Limestone structures form the stone forests of Borneo (Grant Dixon). (b)–(c) Dissolution
of lab-scale planar and axisymmetric objects unveils the sharpening process; images from the same set of experiments reported in
Ref. [23]. The observed noise in the curvature measurements results from surface impurities, like bubbles, affecting image tracking. The
final radius of curvature at the tip was measured to be 60 μm.
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velocity Vs ¼
R
s
0 Vn∂sθds0 enforces an invariant metric

with respect to arclength, thereby separating s and t as
independent variables. Equation (2) with interface velocity
Eq. (1) is the nonlinear integro-PDE proposed in Ref. [23],
here called the sharpening equation (SE); see Ref. [25] for
the Cartesian counterpart.
Previous investigations employed a finite-difference

scheme to solve Eq. (2), but with the GT regularization
required to maintain numerical stability [23]. Other studies
employed a matched-asymptotic expansion, but with
approximation error that may grow large with time
[25,26]. In contrast, we introduce a method to directly
propagate characteristics of Eq. (2), with no regularization
and no additional model approximation made.
To that end, consider a location s ¼ Sð0Þ on the initial

geometry, with tangent angle Θð0Þ ¼ θðSð0Þ; 0Þ. The tra-
jectory SðtÞ evolves via the ODE:

_SðtÞ ¼
�
R
∂Vn

∂s − Vs

�����
s¼SðtÞ

; Sð0Þ ¼ Sð0Þ; ð3Þ

where R ¼ −ð∂θ=∂sÞ−1 ¼ κ−1 is the radius of curvature.
Combining Eqs. (2) and (3) shows that the tangent angle
remains constant along such a characteristic, θðSðtÞ; tÞ ¼
Θð0Þ, thus providing an implicit solution for any initial
profile Θð0Þ ¼ θðSð0Þ; 0Þ. This is the essence of the method
of characteristics.
A PDE-based interpretation of Eq. (3) is also possible

via implicit functions. That is, regard s ¼ sðθ; tÞ, where
θ ∈ ð0; πÞ is now the independent variable, to obtain

∂s
∂t ¼ −

∂Vn

∂θ − Vs; ð4Þ

Vn ¼ −a cos13 θ
�Z

π=2

θ
Rðθ0; tÞ cos13 θ0dθ0

�
−1
4

; ð5Þ

where now Rðθ; tÞ ¼ −∂s=∂θ and Vs ¼
R
θ
π=2 Vnðθ0Þdθ0.

Crucially, the reformulation in terms of θ implies increased
numerical tip resolution in proportion to the sharpening.
We thus solve Eqs. (4) and (5) numerically (see the
Supplemental Material [39] for implementation details)
for a class of left-right symmetric initial conditions.
Results.—As a first numerical test, we simulate the

dissolution of the initial profile θðs; 0Þ ¼ arccotðs=lÞ, with
l ¼ 1 and a ¼ 1 (for other values, time could be rescaled
by the factor l5=4=a). As seen in Fig. 2(a), dissolution
causes the apex to sharpen as the body retreats downwards
and diminishes in size. Figure 2(b) shows a few represen-
tative shapes at different stages of dissolution, illustrating
the dramatic sharpening effect. Figure 2(d) shows the
corresponding distributions of the tangent angle, θðs; tÞ.
Here, a rapid change of tangent angle develops at the tip, as
is consistent with the increasing curvature κ ¼ −∂θ=∂s

there. Indeed, the rescaled tip curvature κ̄0ðtÞ¼ κ0ðtÞ=κ0ð0Þ
shown in Fig. 2(e) increases by 5 orders of magnitude
before saturating.
Figure 2(f) shows the characteristic curves ½t; SðtÞ�

corresponding to different constant values of the tangent
angle θ ¼ Θð0Þ [the physical trajectories of these curves are
shown in red in Fig. 2(a)]. Near the tip (S ≈ 0) character-
istics initially converge towards one another, implying a
large range of tangent angles crowded into a small region,
i.e., sharpening. Previous discretizations of Eq. (2) inter-
preted this convergence as a crossing of characteristics and
thus the formation of a geometric shock. The reformulated
Eq. (4), however, reveals that characteristics bend away
from one another before ever crossing, thus preventing a
finite-time blowup of curvature. Characteristics farther
from the tip are seen to change their direction of travel,
initially propagating outwards, and then inwards, before
they ultimately straighten and travel vertically. At late
times, all characteristics are seen to travel vertically,
suggesting that a terminal shape has arrived.
Exact solutions.—To examine the possibility of a termi-

nal shape, we take a θ derivative of Eq. (4) to obtain an
evolution equation for the radius of curvature [9,44]:

∂R
∂t ¼ Vn þ

∂2Vn

∂θ2 : ð6Þ

Clearly, a steady state of Eq. (6) is given by

Vn ¼ −V0 sin θ ð7Þ

for any constant V0, which is the recessional rate of the tip.
Equation (7) represents steady translation of a fixed shape.
It is the only steady-state Vn that satisfies left-right
symmetry. Inserting Eq. (7) into Eq. (5) and inverting
gives the equilibrium distribution of R,

R�

R�
0

¼ 1þ 2 cos2 θ
sin5 θ

: ð8Þ

This class of equilibrium solutions has one degree of
freedom R�

0, which is the equilibrium radius of curvature
at the tip. Exact expressions for the Cartesian coordinates of
this surface, along with solutions for the corresponding
axisymmetric (3D) problem, are given in the Supplemental
Material [39]. Though differences exist in the θ-L formu-
lation of the 2D and 3D problems, the final equilibrium
solutions are identical when written in Cartesian coordinates.
To test the convergence to this final shape, Fig. 3(a)

shows the simulated interfaces from the previous example,
but shifted to have the same apex. As seen here and in the
close-up, the interfaces indeed collapse to a single profile at
late times. Figure 3(b) shows that the corresponding
distributions of rescaled curvature radius, Rðθ; tÞ=R0ðtÞ,
converge to the equilibrium shape Eq. (8).
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Having observed the convergence to the predicted
morphology, several questions remain: What happens for
different initial conditions? What determines the final tip
radius R�

0 ¼ limt→∞Rð0; tÞ? And how can the results be
reconciled with previous infinite-curvature predictions
[23,26]? To address these questions, we consider a local
expansion in small w ¼ cos θ:

sðw; tÞ ¼ a1ðtÞwþ a3ðtÞw3 þ…; ð9Þ

where odd-symmetry has been used. Thanks to the
change of variables, Vn can be calculated exactly for
any power wn. Inserting into Eq. (4) produces, at leading
order, _R0 ∝ −R−1=4

0 , which is consistent with Ref. [23] and
predicts finite-time blowup of curvature. However, retain-
ing the higher-order terms gives

_R0 ∝ −R−1=4
0

�
1 −

3

5
γ

�
; γðtÞ ¼ a3ðtÞ

a1ðtÞ
; ð10Þ

which is an exact relation (no truncation). Equation (10)
opens the possibility for the curvature divergence to be
controlled by the term ð1 − ð3=5ÞγÞ, and indeed the
equilibrium solution Eq. (8) has the property γ ¼ 5=3.
To further examine this possibility, Fig. 3(c) shows the

simulated dissolution of three initial conditions surround-
ing the equilibrium: sðw; 0Þ ¼ a1ð0Þwþ a3ð0Þw3, with γ
initially set to 5=3, 4=3, and 3. The figure confirms that
γ ¼ 5=3 results in nearly constant curvature [45], whereas
γ > 5=3 (γ < 5=3) leads to decreasing (increasing) curva-
ture, consistent with the sign of _R0 in Eq. (10). Thus, both

tip sharpening and blunting are possible [25,26], with the
value of γ determining which occurs. The case γ ¼ 4=3
leads to tip sharpening, but, due to the proximity to the
equilibrium, not nearly as much as in our first numerical
example. Thus, the enormous curvature growth observed in
Fig. 2 should not always be expected, as it depends on the
initial shape.
We now turn attention to the experimentally measured

shapes that were shown in Fig. 1, for planar (2D) and
axisymmetric (3D) geometries. Figure 4(a) compares the
experimental profiles (shifted to have the same apex) to the
equilibrium morphology of Eq. (8) (thick gray curve). At
late times, the experimental profiles all collapse onto the
predicted shape in both two and three dimensions, thus
conclusively confirming that Eq. (8) accurately describes
the equilibrium spire morphology of a body dissolving
under its own solute-induced convective flow. This agree-
ment with laboratory experiments also validates modeling
assumptions made, including the boundary-layer and qua-
sisteady approximations and the omission of GT effects.
A second test is made possible by the far-field (jsj → ∞)

behavior of the equilibrium solution

y ∼
3

4
R�
0
−1=3x4=3; ð11Þ

which holds in both two and three dimensions [with
ðx; yÞ → ðr; zÞ in three dimensions, see Supplemental
Material [39] ]. Figure 4(b) shows a log-scale comparison
between this predicted 4=3-power law and the experimental
measurements. At late times, the experimental profiles
indeed converge to the predicted power law in both cases.
We note that this power law is consistent with one of the
similarity solutions found in Refs. [25,26], which would
need to be asymptotically matched to an inner (near-tip)
solution. Those similarity solutions, however, predict
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continued evolution of shape, whereas we have found
convergence to a final form. Numerical and experimental
evidence suggests this final morphology to be a stable
attractor.
Closer examination of our exact solutions offers an

interpretation of the flow-physics underlying the conver-
gence in shape dynamics. Within the boundary layer, a few
competing effects exist. First, the apex is in contact with
nearly pure liquid, whereas a solute mixture washes over the
downstream portions. In isolation, this effect would cause
the apex to retreat fastest. On the other hand, the buoyancy-
driven flow accelerates as it advances downstream, due to the
accumulation of dense solute as well as the increase in
surface steepness. This effect enhances convection-induced
dissolution on downstream portions. Which effect is stronger
depends on the detailed geometry of the object, and it is
the interplay between the two that drives shape change.
Ultimately, balance is achieved by the steadily translating
distribution, Vn ¼ −V0 sin θ, which shows that the disso-
lution rate is highest at the tip (θ ¼ π=2) and decreases
locally in proportion to the surface steepness. At this stage,
the mass loss rate of the pinnacle has a simple scaling
dm=dt∼2

R π=2
θ0

VnðθÞR�ðθÞdθ∼−V0R�
0∼−ðR�

0Þ3=4, imply-
ing that the mass loss slows as the tip sharpens.
Discussion.—In this Letter, we have described, in exact

form, the final spire morphology of a body being reshaped
under its own dissolution-induced natural convective flow,
thereby concluding the search from Refs. [23–26,38].
Carefully designed numerics show that, rather than forming
a geometric shock, characteristics avoid crossing to pursue
this terminal shape, which exhibits large, but finite tip
curvature. This situation is perhaps analogous to exact
solutions found in the context of free surface flows, whose
finite curvature reversed previous hypotheses on the for-
mation of cusp singularities [46].
The simple, explicit nature of our solutions suggests that

they may be used to infer properties, e.g., age or past
environmental conditions, of natural structures. To take one
example, suppose that a karst pinnacle at time t0 has height
hðt0Þ, width dðt0Þ, and that its apex dissolves at the rate
_hðt0Þ ¼ Vðt0Þ. As it nears the final shape, Eq. (11) suggests
hðtÞdðtÞ−4=3 ¼ hðt0Þdðt0Þ−4=3 and the constant tip velocity
gives hðtÞ − hðt0Þ ¼ Vðt0Þðt − t0Þ. These two relationships
comprise a closed system for ½dðtÞ; hðtÞ� at any given
time—including the past (t < t0) and the future (t > t0)—
thus offering the potential to estimate the past dimensions
or, if the dimensions can be estimated through other means,
the age of the structure. To take this idea one step further,
the typical spacing L between pinnacles in a stone forest
approximates the initial width dð0Þ ≈ L, thus offering
simple estimates for the pinnacle’s initial height hð0Þ ¼
hðt0Þ½L=dðt0Þ�4=3 and its age t0 ¼ ½hðt0Þ − hð0Þ�=Vðt0Þ.
Though natural systems involve a range of other compli-
cating factors (such as rainfall, turbulent boundary layers,

and fracture) our calculations, based principally on dis-
solution and fluid dynamics, may offer a leading-order
understanding of these amazing structures.
Aspects of our analysis can be extended to other physical

systems. For example, Eq. (6) can have a separable solution
Rðθ; tÞ ¼ AðθÞBðtÞ, corresponding to the self-similar evo-
lution of erodible and soluble bodies immersed in an
externally forced flow [1,2,43]. Meanwhile, our approach
can be applied to dynamics with an opposite sign in Vn,
seen in growing systems like crystallization [44] and the
formation of stalactites [16,17].
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