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In the hydrodynamic model description of heavy-ion collisions, the elliptic flow v2 and triangular flow
v3 are sensitive to the quadrupole deformation β2 and octupole deformation β3 of the colliding nuclei.
The relations between vn and βn have recently been clarified and were found to follow a simple parametric
form. The STAR Collaboration has just published precision vn data from isobaric 96Ruþ 96Ru and
96Zr þ 96Zr collisions, where they observe large differences in central collisions v2;Ru > v2;Zr and
v3;Ru < v3;Zr. Using a transport model simulation, we show that these orderings are a natural consequence
of β2;Ru ≫ β2;Zr and β3;Ru ≪ β3;Zr. We reproduce the centrality dependence of the v2 ratio qualitatively and
v3 ratio quantitatively and extract values of β2 and β3 that are consistent with those measured at low-energy
nuclear structure experiments. STAR data provide the first direct evidence of strong octupole correlations in
the ground state of 96Zr in heavy-ion collisions. Our analysis demonstrates that flow measurements in high-
energy, heavy-ion collisions, especially using isobaric systems, are a new precision tool to study nuclear
structure physics.
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Most atomic nuclei present intrinsic deformed shapes,
characterized notably by quadrupole, octupole, and hexa-
decapole components [1,2]. Experimental evidences for
nuclear deformation are primarily extracted from spectro-
scopic measurements and models of reduced transition
probability between low-lying rotational states, which
involves nuclear experiments with energy per nucleon less
than a few tens of MeVs. Recently, the prospects of probing
the nuclear deformation at much higher beam energy,
energy per nucleon exceeding hundreds of GeVs, by taking
advantage of the responses of hydrodynamic collective
flow of the final state particles to the shape and sizes of the
initial state, have been discussed [3–13], and several
experimental evidences have been observed [14–18].
Nuclear deformation is often described by a nucleon

density in a deformed Woods-Saxon form,

ρðr; θ;ϕÞ ¼ ρ0
1þ e½r−Rðθ;ϕÞ�=a

;

Rðθ;ϕÞ ¼ R0ð1þ β2Y0
2 þ β3Y0

3 þ β4Y0
4Þ; ð1Þ

where the nuclear surface Rðθ;ϕÞ includes only the most
relevant axial symmetric quadrupole, octupole, and hexa-
decapole deformations [19].
It is straightforward to see why dynamics of heavy-ion

collisions is sensitive to nuclear deformation. These
high-energy collisions deposit a large amount of energy
in the overlap region, forming a hot and dense quark-
gluon plasma (QGP) [20], whose initial shape in the

transverse plane is sensitive to the nuclear deformation.
This initial shape is characterized via eccentricities εn ¼
jR rneinϕeðr;ϕÞrdrdϕ=R rneðr;ϕÞrdrdϕj, estimated from
the energy density eðr;ϕÞ in the overlap. Driven by the
pressure gradient forces and subsequent hydrodynamic
collective expansion, the initial εn are transferred into
azimuthal anisotropy of final state hadrons [21], domi-
nated by an elliptic and a triangular modulation of
particle distribution, dN=dϕ ∝ 1þ 2v2 cos 2ðϕ −Ψ2Þ þ
2v3 cos 3ðϕ − Ψ3Þ. The vn coefficients reflect hydrody-
namic response of the QGP to εn and follow an approxi-
mate linear relation vn ¼ knεn for events in fixed centrality
[22,23]. In collisions of spherical nuclei, ε2 mainly reflects
the elliptic shape of the overlap controlled by the impact
parameter, while nonzero ε3 arises from random fluctua-
tions of nucleons. The presence of nonzero βn enhances εn
and, consequently, the values of vn, which on general
ground follow a simple quadratic form [24] for n ¼ 2
and 3,

ε2n ¼ a0n þ
X4
m;k¼2

b0n;mkβmβk;

v2n ¼ an þ
X4
m;k¼2

bn;mkβmβk; ð2Þ

where ε2n and v2n are mean-square values calculated for
events in a narrow centrality. The a0n and an are values for
collisions of spherical nuclei, which are strong functions of
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system size and centrality. In contrast, the coefficients b0
and b are expected to be nearly independent of system size
[12,24]. This is because deformations change the distribu-
tion of nucleons in the entire nucleus; the coefficients in a
given centrality depend mainly on the alignment of two
nuclei and centrality, not the system size.
All the b0 and b terms are not equally important. In fact,

in the ultracentral collisions (UCCs), model studies show
that only one deformation term is important [12],

ε2n ¼ a0n þ b0nβ2n; v2n ¼ an þ bnβ2n: ð3Þ

These simple relations provide a powerful data-driven
method to constrain the β2 and β3 by comparing collisions
of two species with similar sizes; see Refs. [10–12] for
details. The most straightforward scenario is to consider
collisions of two isobaric systems X þ X and Y þ Y with
the same mass number, therefore having the same coef-
ficients in Eq. (3). In this case, these ratios have a
particularly simple expression,

ε2n;Y
ε2n;X

¼ 1þ b0n
a0n

ðβ2n;Y − β2n;XÞ=
�
1þ b0n

a0n
β2n;X

�

≈ 1þ b0n
a0n

ðβ2n;Y − β2n;XÞ; ð4Þ

v2n;Y
v2n;X

¼ 1þ bn
an

ðβ2n;Y − β2n;XÞ=
�
1þ bn

an
β2n;X

�

≈ 1þ bn
an

ðβ2n;Y − β2n;XÞ: ð5Þ

The relative ordering of vn in the two systems is a direct
reflection of the ordering of their βn values [10].
Additionally, in the UCC region, the values of a0n and
an are the smallest and the influence of deformations is the
largest.
In this Letter, we apply this idea to the recent isobar

96
40Zr þ 96

40Zr and 96
44Ruþ 96

44Ru collisions [25] and make
predictions on ratios of vn from the known values of β2 and
β3 from nuclear structure measurements, as given in
Table I. Assuming the same βn for neutrons and protons
and a uniform charge distribution out to the distance
Rðθ;ϕÞ, the βn values are obtained from the measured

reduced electric transition probability BðEnÞ↑ via the
standard formula [26],

β2 ¼
4π

3ZR2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðE2Þ↑

e2

r
; β3 ¼

4π

3ZR3
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðE3Þ↑

e2

r
; ð6Þ

withR0 ¼ 1.2A1=3 fm. We note that the number of neutrons
in 96Zr nucleus is equal to one of the so-called “octupole
magic” numbers 56 [27]. Low-energy experiments indeed
show that 96Zr has a very large octupole collectivity
corresponding to a large β3 value, but a small β2 value
[28–30]. On the other hand, the 96Ru nucleus has larger β2,
but shows no evidence of significant β3. The latter is
expected from the very large excitation energy for its 3−1
state. In this analysis, we assume β3;Ru ¼ 0. Note that the
predictions from nuclear structure models [31] have large
discrepancies from these data; therefore, they are not used
in this Letter.
To understand the hydrodynamic response to nuclear

deformations and make predictions, we employ a multi-
phase transport (AMPT) model [34] as a proxy for hydro-
dynamics. This model is successful in describing collective
flow data in small and large collision systems at RHIC and
LHC [35–38] and has been used to study the βn dependence
of vn [10,11]. We use AMPT model v2.26t5 in string-
melting mode at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV and a partonic cross
section of 3.0 mb [36,37], which gives a reasonable
description of Auþ Au and Uþ U v2 data at RHIC
[39,40]. We simulate generic isobar 96X þ 96X collisions
with R0 ¼ 5.09 and a ¼ 0.52 fm. We performed a scan on
β2: β2 ¼ 0, 0.05, 0.1, 0.15, 0.2 and β3 ¼ 0, as well as a scan
on β3: β3 ¼ 0, 0.05, 0.1, 0.15, 0.2 and β2 ¼ 0.06. The εn
are calculated from participating nucleons and vn are
calculated using two-particle correlation method with
hadrons in 0.2 < pT < 2 GeV and jηj < 2 [41].
The left panels of Fig. 1 show ratios of εnðβ2; β3Þ

for given values of β2 or β3 to that for spherical nuclei.
There are four different types of ratios considered:
ε3ðβ2; 0Þ=ε2ð0; 0Þ, ε3ð0; β3Þ=ε3ð0; 0Þ, ε2ð0; β3Þ=ε2ð0; 0Þ,
and ε3ðβ2; 0Þ=ε3ð0; 0Þ; i.e., we not only consider how
the εn are affected by βn but also the cross-correlation
between ε2 and β3 or between ε3 and β2. Our study shows
that the εn in the Glauber model takes the following
simplified version of Eq. (2) [12]:

ε22 ¼ a02 þ b02β
2
2 þ b02;3β

2
3; ε23 ¼ a03 þ b03β

2
3: ð7Þ

The ε2 is strongly influenced by β3 in the noncentral
collisions, reaching a maximum at Npart ∼ 146 correspond-
ing to about 8% centrality. The right panels of Fig. 1 show
ratios of v2n with the same layout, which we found can be
well parametrized by

TABLE I. Values of β2 deduced from the BðE2; 0þ1 → 2þ1 Þ [32]
and β3 deduced from three BðE3; 0þ1 → 3−1 Þ [33] transition
measurements via Eq. (6). The corresponding excitation energies
are also provided. In general, larger excitation energy corre-
sponds to smaller deformability for the nucleus.

β2 E2þ
1
(MeV) β3 E3−

1
(MeV)

96Ru 0.154 0.83 � � � 3.08
96Zr 0.062 1.75 0.202, 0.235, 0.27 1.90
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v22 ¼ a2 þ b2β22 þ b2;3β23; v23 ¼ a3 þ b3β23: ð8Þ

It is clear from Fig. 1 that the ratio of vn in all cases
is smaller than the ratio of εn for the same βn. This
observation implies that the hydrodynamic response for
b0 parameters are smaller than those for the a0, i.e., bn=b0n <
an=a0n and b2;3=b02;3 < a2=a02. In other words, the contri-
butions of vn from nuclear deformation are more damped
by hydrodynamic evolution than that from the eccentricity
of the spherical nuclei. One possible explanation is that the

nuclear deformation increases εn by adding more nucleons
toward the edge of the overlap, leading to a weaker hydro-
dynamic response and less efficient conversion of εn to vn.
With Eq. (7) in hand and using the values of βn from

Table I, we are ready to predict the vn ratios between
RuþRu and ZrþZr collisions. Safely assuming β3;Ru ¼ 0,
these ratios are expected to scale like

v22;Ru
v22;Zr

≈ 1þ b2
a2

ðβ22;Ru − β22;ZrÞ −
b2;3
a2

β23;Zr; ð9Þ

v23;Ru
v23;Zr

≈ 1 −
b3
a3

β23;Zr: ð10Þ

The coefficients bn=an and b2;3=a2 can be calculated
from Fig. 1 as a function of Npart, which can then be used
to predict vn;Ru=vn;Zr. Alternatively, vn;Ru=vn;Zr can be
obtained directly according to the βn values in Table I,

vn;Ru
vn;Zr

≈
vnðβ2;Ru; 0Þ
vnðβ2;Zr; 0Þ

×
vnð0; β3;RuÞ
vnð0; β3;ZrÞ

¼ vnð0.154; 0Þ
vnð0.062; 0Þ

×
vnð0; 0Þ
vnð0; 0.2Þ

:

Since β2;Ru ≫ β2;Zr and the value of β3;Zr is large, the
ratio v2;Ru=v2;Zr is expected to contain a positive contri-
bution from β2 and a negative contribution from β3. This is
clearly demonstrated in the top panel of Fig. 2. The β3;Zr
has a small impact in the 0%–1% centrality, but signifi-
cantly reduces the v2 ratio over the 1%–40% centrality
range, with the maximum reduction at around Npart ∼ 146

or 8% centrality. The influence of β3;Zr also forces a much
sharper decrease of the v2 ratio in the centrality range of
0%–5% and leads to a nonmonotonic centrality depend-
ence. On the other hand, the predicted v3;Ru=v3;Zr ratios in
the bottom panel of Fig. 2 are independent of the β2 of the
two systems. This interesting interplay between β2 and β3
and the resulting features in the vn ratio in the isobar
collisions are salient and robust predictions that can be
verified experimentally.
The STAR Collaboration has just released the vn;Ru=vn;Zr

data in several coarse centrality bins [25]; they are con-
trasted with our predictions in Fig. 2. The v2 ratio data
show nonmonotonic centrality dependence similar in shape
to our prediction, which include effects of both β2 and β3,
and such nonmonotonicity was not predicted in previous
studies that did not include the influence of β3 [42,43].
However, our prediction is systematically lower than the
STAR data by up to 2% in the midcentral and peripheral
region. This residual difference could be due to the large
neutron skin effect in 96Zr [43], which was found to
enhance ε2;Ru=ε2;Zr with a shape and magnitude similar
to this difference. Remarkably, our prediction of v3 ratio
agrees nearly perfectly with the STAR data over the entire

1

1.05

1.1

1.15 (0,0)2ε,0)/
2
β(2ε

=0.00
2
β

=0.05
2
β

=0.10
2
β

=0.15
2
β

=0.20
2
β

(0,0)
2

,0)/v
2
β(2v

partN100 150

1

1.05

1.1

1.15 (0,0)3ε,0)/
2
β(3ε

partN100 150

AMPT
|<2η<2 GeV, |

T
0.2<p

(0,0)
3

,0)/v
2
β(3v

1

1.05

1.1

1.15
8%

(0,0)2ε)/
3
β(0,2ε

=0.00
3
β

=0.05
3
β

=0.10
3
β

=0.15
3
β

=0.20
3
β

8%
(0,0)

2
)/v

3
β(0,2v

partN100 150

1

1.05

1.1

1.15 (0,0)3ε)/
3
β(0,3ε

partN100 150

(0,0)
3

)/v
3
β(0,3v

FIG. 1. The Npart dependence of ratios of εn (left) or vn (right)
relative to undeformed case with for n ¼ 2,3 in generic 96X þ 96X
collisions with different β2 (top) and β3 (bottom) values. The vn
are calculated in the AMPT models with hadrons in jηj < 2 and
0.2 < pT < 2 GeV.
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centrality range when β3;Zr ¼ 0.2 is used. This also raises a
question whether the large β3 value constrained by the
isobar collisions could imply a large static octupole
deformation in the ground state of 96Zr, as implemented
in our AMPT model simulation.
Next, we make predictions in the 0%–1% most central

collisions, where the influence of nuclear deformation is
strongest, the contribution from β3 to v2 is small, and vn
ratios are expected to be described precisely by Eq. (5) with
bn=an as the only free parameters. The STAR data are not
yet available in this region. Figure 3 shows the predicted
ratios v22;Ru=v

2
2;Zr and v23;Ru=v

2
3;Zr as a function of β22;Ru and

β23;Zr, respectively. The predictions follow strictly a linear
dependence on β2n. Assuming the β2;Ru ¼ 0.154 and β2;Zr ¼
0.062 from Table I, we predict a v22;Ru=v

2
2;Zr ≈ 1.16,

corresponding to v2;Ru=v2;Zr ≈ 1.08. On the other hand,
the three octupole deformation values from nuclear struc-
ture measurements, β3;Zr ¼ 0.202, 0.235, 0.27, would
predict v23;Zr=v

2
3;Ru ¼ 1.24, 1.33, 1.44 as indicated by the

solid arrows in Fig. 3, or equivalently, v3;Ru=v3;Zr ¼ 0.90,
0.87, 0.83. The latter two cases, β3;Zr ¼ 0.235 and 0.27, are
clearly ruled out by the data-theory comparison of the v3
ratio in the bottom panel of Fig. 2. These two β3;Zr values
would also lead to further reduction of the v2;Ru=v2;Zr ratio

(indicated by the open circles) in the top panel of Fig. 2.
This additional reduction amounts to 0.2352=0.22 − 1 ¼
38% or 0.272=0.22 − 1 ¼ 82% of the difference between
the two AMPT predictions, which will make both the shape
and the magnitude of the v2;Ru=v2;Zr incompatible with the
experimental data, even after including the predicted
neutron skin effects [43]. Therefore, for the first time,
the isobar collisions show clear potential for providing new
constraints on nuclear deformation parameters that can
complement those from nuclear structure spectroscopy in
testing state-of-the-art nuclear structure models. In order to
pin down the interplay between β2 and β3 more quantita-
tively, however, STAR measurement [25] should be
extended to finer centrality bins, especially in the 0%–
5% range where the vn ratios are still changing very rapidly.
Some work is required in order to accomplish a precise

determination of nuclear deformations using heavy-ion
collisions. First, and most importantly, we need to under-
stand the connection of the βn given by nuclear structure
method (6) and βn in heavy-ion collisions via Eq. (1). The
former measures the charge distribution at the timescale of
10−21 s, while the heavy-ion collisions care only about the
mass distribution at a much shorter time of 10−24 s, which
is also strongly Lorentz contracted, unlike in the low-
energy experiments. For example, changing the R0 value
alone in Eq. (6) would directly change the value of
extracted βn, but changing the R0 in Eq. (1) has little
impact on the hydrodynamic response to βn. From the
modeling side of the heavy-ion collisions, we need to pin
down the hydrodynamic response of vn to the deformation
contribution to the eccentricity, which is clearly different
from the hydrodynamic response of vn to the baseline
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FIG. 2. Predicted ratios of v2 (top) and v3 (bottom) between
Ruþ Ru and Zr þ Zr collisions from the AMPT model based on
the β2 and β3 values for Ru and Zr from Table I. They are
compared with the STAR data from Ref. [25].
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eccentricity for spherical nuclei (see Fig. 1). Further
hydrodynamic model studies are required to quantify the
systematic uncertainties, in particular, the ratio an=bn.
Nevertheless, the STAR results and our study demonstrate
that heavy-ion collisions can serve as a new tool for
imaging the shape of the atomic nuclei and possibly other
features of their nuclear structure. This provides good
arguments for an extended system scan of different iso-
baric systems for precision measurement of interesting
nuclear structure effects and complements the low-energy
methods [11,12].
In summary, recent STAR measurement of v2 and v3

show significant differences between 96Zr þ 96Zr and
96Ruþ 96Ru collisions. Using a transport simulation, we
show that these differences can be naturally explained from
the large quadrupole deformation β2 of 96Ru and large
octupole deformation β3 of 96Zr. Our calculations quanti-
tatively describe the v3;Ru=v3;Zr by assuming β3;Zr ¼ 0.2
from one nuclear structure measurement. However, the
presence of β3;Zr was found to significantly enhance the
v2;Zr and led to a nonmonotonic centrality dependence of
v2;Ru=v2;Zr as observed in the data. Additional physics such
as neutron skin differences are also required to quantita-
tively describe the v2 ratio. Our analysis demonstrates that
isobaric heavy-ion collisions can be used as a precision tool
to image the shape and radial structures of the nuclei. We
hope this can be done in the existing high-energy collider
facilities in the near future.
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