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Taylor expansion in powers of baryon chemical potential (μB) is an oft-used method in lattice QCD to
compute QCD thermodynamics for μB > 0. Based only upon the few known lowest order Taylor
coefficients, it is difficult to discern the range of μB where such an expansion around μB ¼ 0 can be trusted.
We introduce a resummation scheme for the Taylor expansion of the QCD equation of state in μB that is
based on the n-point correlation functions of the conserved current (Dn). The method resums the
contributions of the first N correlation function D1;…; DN to the Taylor expansion of the QCD partition
function to all orders in μB. We show that the resummed partition function is an approximation to the
reweighted partition function at μB ≠ 0. We apply the proposed approach to high-statistics lattice QCD
calculations using 2þ 1 flavors of Highly Improved Staggered Quarks with physical quark masses on
323 × 8 lattices and for temperatures T ≈ 145–176 MeV. We demonstrate that, as opposed to the Taylor
expansion, the resummed version not only leads to improved convergence but also reflects the zeros of the
resummed partition function and severity of the sign problem, leading to its eventual breakdown. We also
provide a generalization of scheme to include resummation of powers of temperature and quark masses in
addition to μB, and show that the alternative expansion scheme of [S. Borsányi et al., Phys. Rev. Lett. 126,
232001 (2021).] is a special case of this generalized resummation.
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Introduction.—Lattice quantum chromodynamics (QCD)
results for the QCD equation of state (EOS) plays a critical
role in the dynamicalmodeling of heavy-ion collisions [1–4]
and, thereby, in the experimental explorations of the
QCD phase diagram in the T-μB plane. Because of the
fermion sign problem it is difficult to carry out lattice QCD
computations directly at μB ≠ 0. Despite some recent
progress [5–10], direct lattice computations of the QCD
EOS μB ≠ 0 with physical quark masses, fine lattice spac-
ings, and large lattice volumes have remained elusive.
Instead, the present state-of-the-art lattice QCD EOS at
μB > 0 has been obtained using the Taylor expansion
[11,12] and the analytic continuation [13,14] methods. In
the Taylor expansion method one expands the pressure in
powers of μB around μB ¼ 0 and directly computes the
Taylor coefficients at μB ¼ 0. For the analytic continuation,
one avoids the fermion sign problem using simulations at
purely imaginary values μB, fits these results with a power
series in μB to determine the Taylor coefficients at μB ¼ 0
and then provides the EOS at real μB > 0 based on these

Taylor coefficients. On the other hand, it is well known that
the applicability of the Taylor expansion as well as the
analytic continuation should be limited by the zeros, nearest
to μB ¼ 0, of the partition function in the entire complex-μB
plane [15–17]. In principle, it is possible to estimate the
zeros of the partition function by re-expressing the power
series in real or imaginary μB in terms of Padé approximants
[12] or in a power series of the fugacity [18–20]. Armed, in
reality, with only the few lowest order Taylor coefficients,
this becomes a very difficult task and, in practice, one just
restricts the EOS to fT; μBg that avoids any pathological
nonmonotonicity in the truncated Taylor series [11,14].
Furthermore, these methods provide very little guidance on
the severity of the fermion problem, i.e., how rapidly the
phase of the partition function fluctuates asμB is increased. It
is possible to determine the zeros of the partition function as
well as its average phase by reweighting the fermion
determinant to μB ≠ 0 [21–25]. However, due to the com-
putational cost associated with exact evaluation of the
fermion determinant, at present this method is restrained
within coarse lattice spacings and small lattice volumes.
In this work, we introduce a method for the calculation of

the lattice QCD EOS that genuinely resums the truncated
Taylor series to all orders in μB and whose breakdown
encodes the severity of the sign problem and zeros of the
resummed partition function.
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The resummation method.—The Taylor expansion to
OðμNB Þ of the excess pressure, ΔPðT; μBÞ≡ PðT; μBÞ−
PðT; 0Þ, is given by

ΔPE
N

T4
¼

XN

n¼1

χBn
n!

�
μB
T

�
n
; ð1Þ

where the Taylor coefficients are defined as

χBn ðTÞ ¼
1

VT3

∂n lnZðT; μBÞ
∂ðμB=TÞn

����
μB¼0

: ð2Þ

Here, the QCD partition function is denoted as
Z ¼ R

e−S det½M�DU, V is the spatial volume, U is the
SU(3) gauge fields, S is the pure gauge action, andM is the
fermion matrix. Each χBn consists of a sum of terms like
hDa

i D
b
j � � �Dc

ki with i · aþ j · bþ � � � þ k · c ¼ n [26,27],
where

DnðTÞ ¼ D̄n · n! ¼
∂n ln det½MðT; μBÞ�

∂ðμB=TÞn
����
μB¼0

; ð3Þ

and the h·i denotes the average over gauge field ensembles
at μB ¼ 0, i.e., hOi ¼ R

Oe−S det½MðT; 0Þ�DU=Z. The
physical interpretation of Dn is simple for the continuum
theory: Dn ¼

R
dx1 � � � dxnJ0ðx1Þ � � � J0ðxnÞ is the inte-

grated n-point correlation function of the 0th component of
the conserved (baryon) current J0ðxÞ at a space-time point
x. Note that, due to CP symmetry of QCD all Dn for n ¼
oddðevenÞ are purely imaginary(real) and only the n ¼
even terms contribute to Eq. (1). In practice, lattice QCD
computations of the χBN involve computations of all Dn for
n ≤ N as intermediate steps, and χBN are obtained from
combinations of Dn and their powers.
Contributions of various combinations of Dn to the few

lowest order Taylor coefficients are sketched in Fig. 1.

If one considers the factorials and the powers of μB=T
associated with each Dn in the sum of Eq. (1), it is not
difficult to realize that all contributions of each Dn to ΔPE

can be resummed into exponential forms. For example,
contributions ofDn

1 from all χBn in Eq. (1) can be resummed
as exp½D̄1ðμB=TÞ�. Similarly, contributions of allDn

2 can be
resummed as exp½D̄2ðμB=TÞ2�, and so on. Also it is easy to
see that the contributions of the mixed terms like Dn

1D
m
2

arise from exp½D̄1ðμB=TÞ� × exp½D̄2ðμB=TÞ2�. Thus, it is
possible to write down a resummed version of Eq. (1), viz.

ΔPR
N

T4
¼ 1

T3V
ln

�
exp

�XN

n¼1

D̄n

�
μB
T

�
n
��

; ð4Þ

providing the EOS up to infinite orders in μB. The ΔPR
N can

be considered as a μB-dependent effective action obtained
by resumming up to N-point correlation functions of the
conserved current. Expansion of ΔPR

N in powers of μB=T
yields an infinite series in μB=T, in addition to the truncated
Taylor series: ΔPE

N þP∞
n>NhD̄i

1 � � � D̄j
NiðμB=TÞn, where

i;j¼0;…;N satisfying 1 · iþ � � � þ Nj ¼ n. The Taylor
expanded (N E

N) and the resummed (N R
N) net baryon-

number densities can be straightforwardly obtained as a
single μB derivative of ΔPE and ΔPR in Eqs. (1) and (4),
respectively.
The resummed version in Eq. (4) also highlights the

connection between the Taylor expansion and the reweight-
ing method. In the reweighting method ZðT;μBÞ=ZðT;0Þ¼
hdet½MðT;μBÞ�=det½MðT;0Þ�i can be calculated, if compu-
tationally feasible, by exactly evaluating the ratio of the
fermion matrix determinants on the gauge fields gene-
rated at μB ¼ 0. In more realistic lattice calculations with
large volumes, exact evaluations of the determinant ratios
might not be computationally feasible and one may con-
sider evaluating det½MðT; μBÞ� within some approxima-
tion scheme to obtain approximate partition function
ZR
NðT; μBÞ ≈ ZðT; μBÞ. Following the spirit of the Taylor

expansion, one such approximation scheme can be expan-
sion of det½MðT; μBÞ� in powers of μB=T. Keeping in mind
det½M� ¼ exp½Tr lnM� and Eq. (3), one can immediately
recognize

ZR
NðT; μBÞ
ZðT; 0Þ ¼

�
exp

�XN

n¼1

D̄n

�
μB
T

�
n
��

: ð5Þ

Since CP symmetry dictates that the even(odd) Dn are
purely real(imaginary) and the partition function must be
real, a measure of the severity of the sign problem is given
by the average phase factor for ZR

N (with μB real),

hcosΘR
Ni ¼

�
cos

�XN=2

n¼1

Im½D̄2n−1�
�
μB
T

�
2n−1

��
: ð6Þ

FIG. 1. Contributions of different Dn to the χBn . Each blob
represents insertion of the 0th component of the conserved
current. Solid red and dotted black lines represent directly
exponentiated and cross terms, respectively.
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An expansion of hcosΘR
Ni in μB=T leads to the Taylor

expanded measure of the average phase of the partition
function [23,26], which we will denote by ΘE

N. As the sign
problem becomes more severe the average phase
hcosΘR

Ni ≈ 0 and resummed results will also show signs
of breakdown. Furthermore, although ΔPE

N can be evalu-
ated for any complex value of μB, ΔPR

N becomes undefined
when Re½ZR

N � ≤ 0 for a given N and statistics, leading to a
natural breakdown of the resummed results. The location of
the zeros of ZR

N in the complex-μB plane will indicate the μB
region where such resummation can be applicable.
Obviously, for any given N the region of applicability of
ΔPE

N cannot exceed the same for ΔPR
N.

Lattice QCD computations.—For this work, we used the
data for χBn andDn generated by the HotQCD Collaboration
for calculations of the QCD EOS [11] and the chiral
crossover temperature [28] at μB > 0 using the Taylor
expansion method. The HotQCD ensembles were gener-
ated with 2þ 1 flavors of Highly Improved Staggered
Quarks and the tree-level improved Symanzik gauge action
[29–31]. Bare quark masses were chosen to reproduce,
within a few percent, the physical value of the kaon mass
and a pseudo-Goldstone pion mass of 138 MeV in the
continuum limit at T ¼ μB ¼ 0 and the lattice spacing were
calibrated against the physical value of the kaon decay
constant [32]. We present lattice QCD results from a single
lattice size 323 × 8 and for 6 temperatures T ¼ 145, 151,
157, 166, 171, 176 MeV. About 475, 520, 716, 522, 232,
and 152 K gauge field configurations were used to measure
Dn at these temperatures, respectively. The gauge field
configurations were separated by 10 Rational Hybrid
Monte Carlo trajectories of unit length. The Dn were
calculated within the formalism adopted in Refs. [11,28],
i.e., using the exponential-μ formalism [33] for n ≤ 4 and
the linear-μ formalism [34,35] for n > 4. The expressions
for Dn in terms of the traces involving the inverse of the
staggered fermion matrix and its μB derivatives are well
known [26,36]. Each trace was calculated stochastically for
each configuration by employing 2000 random Gaussian
volume sources for the trace D1 and 500 random sources
for the rest [36].
Results.—To demonstrate the superiority of the resum-

mation method over the Taylor expansion, we chose the
temperature where we had the largest statistics, i.e.,
T ¼ 157 MeV, which is also closest to the QCD crossover
temperature [28]. In Fig. 2, we compare ΔPE

N with ΔPR
N

(top) andN E
N withN R

N for different ordersN. Comparisons
are shown both for real as well as imaginary values of μB,
corresponding to positive and negative values of ðμB=TÞ2,
respectively. The ΔPR

N and N R
N show very good conver-

gence between different orders N ¼ 2, 4, 6, 8. The Taylor-
expanded results seem to approach their respective resu-
mmed results as contributions from higher orders in μB are
included; however, the convergence of the Taylor-expanded

results is slow due to the alternating signs of the higher
order χBn near the QCD crossover [11–13]. The resumma-
tion method overcomes this problem by including contri-
butions from all orders in μB and shows markedly improved
convergence.
We checked that such a breakdown is not a mere

statistical issue by repeating the calculations using only
parts of the gauge configurations available at this temper-
ature. Similar breakdown for μB=T ≳ 1.5was also observed
in Refs. [12,37,38] when the EOS was reconstructed from
the Padé approximants of the Taylor series in μB. While
Padé-based continuations of the QCD crossover temper-
ature from imaginary values μB did not encounter such
breakdowns [39,40], the same in the case of the EOS
seemed to break down due to singularities in the complex-
μB plane [41].
To investigate the origin of this breakdown, we com-

puted the average phase as a function of real μB, cf. Eq. (6).
The results are shown in Fig. 3 (top). Also, hcosΘR

Ni ≈ 0 for
μB=T ≳ 1.5, which shows that the sign problem is uncon-
trollably severe where the EOS calculations broke down.
The resummation method thus faithfully captures the
severity of the sign problem, as opposed to the Taylor
expansion. The phase factor cannot be calculated exactly
within the Taylor series approach. Its Taylor series expan-
sion too converges very slowly, as the bands plotted in
Fig. 3 (top) show. Further, we searched for the zeros of
resummed partition function, cf. Eq. (5), in the complex μB
plane. We solved for ZR

N ¼ 0 using the Newton-Raphson

FIG. 2. Comparisons between the Taylor expanded and re-
summed results for different orders for the excess pressure (top)
and net baryon-number density (bottom) at T ¼ 157 MeV.
Results for real and imaginary μB=T are plotted on the positive
and negative x axis, respectively.
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algorithm with initial guesses chosen from a uniform
distribution over a grid 0 ≤ fReðμB=TÞ; ImðμB=TÞg ≤
2.5. The results are shown in Fig. 3 (bottom). The zeros
of ZR

6 and ZR
8 are more or less consistent with each other

and appears only for jμB=Tj≳ 1.5. The exact nature of the
singularity responsible for breakdown of the resummation
method is certainly of great interest, i.e., whether it is
associated with the Yang-Lee edge singularity of the QCD
chiral transition [15,17] or the QCD critical point and
approaches the real axis [12,21,22,37,38], etc. This will
need detailed quantitative studies involving careful finite-
volume scaling analyses using more sophisticated tech-
niques [18,20,42] and is beyond the scope of the present
work. But our results demonstrate that the breakdown of the
resummation method reflects the associated singularities of
the partition function, at least qualitatively.
Finally, in Fig. 4 we summarize results for all T ¼

145–176 MeV by showing comparisons between ΔPR
6 and

N R
6 with the corresponding ΔPE

6 andN E
6 . As in the case of

T ¼ 157 MeV, ΔPR and N R show improved convergence
over ΔPE andN E at all temperatures. Again, in contrast to
the Taylor expansion the resummation method shows signs
of breakdown for μB ≳ 200–250 MeV, depending on the
temperature. As before, we checked that in all cases, these
breakdowns reflect the severity of the sign problem and the
singularities of the partition function in the complex-
μB plane.

Generalization to multiparameter and joint expansion in
T, μB.—Since our resummation scheme is equivalent to an
approximate reweighting method, for large values of μB the
results obtained using this method are subjected to the so-
called overlap problem. The distribution of the gauge
configurations at μB ¼ 0 might be drastically different
from that at large μB, leading to smaller overlap between
the two gauge field distributions and inaccurate results with
increasing μB. A hint of such an overlap problem may be
seen in Fig. 2, where the resummed results for ImðμBÞ not
only deviate from the corresponding Taylor expansion
results but also from the direct lattice QCD computations
at ImðμBÞ [14]. To mitigate such overlap problems, we
propose a generalized resummation scheme that is akin to
multiparameter reweighting [21–24] in the bare gauge
coupling, Δβ ¼ β − β0, and quark mass, Δm ¼ m −m0.
Our resummation scheme also can be extended to obtain
ZR
NðT; μBÞ starting from a different temperature T0ðβ0Þ and

bare quark mass m0,

ZR
NðT; μBÞ
ZðT0; 0Þ

¼ he−SGΔβþ
P

N
iþj¼1

ḠijðμBT ÞiðΔmT Þji; ð7Þ

where the expectation value is taken over gauge fields
associated with fβ0; m0; 0g. Here, SG is the pure gauge
action and

FIG. 3. (Top) The average phase factor hcosΘR
Ni as a function

of μB=T. The bands are the Taylor series expansions of the phase
factor to different orders. (Bottom) Zeros of ZR

N in the complex-
μB plane. Only roots in the first quadrant are shown since the
distribution is symmetric in the four quadrants. Both top and
bottom plots are for T ¼ 157 MeV.

FIG. 4. Comparisons between the excess pressure (top) and
the net baryon-number density (bottom) obtained the sixth
order resummation (ΔPR

6 and N R
6 ) and Taylor expansion (ΔPE

6

and N E
6 ) methods for all six temperatures that were considered

in this work.
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Ḡijðβ0; m0Þ ¼
∂i∂j ln det½Mðm; μBÞ�
i!j!∂ðμB=TÞi∂ðm=TÞj

����
ðm0;0Þ

: ð8Þ

Note, Ḡi0 ¼ D̄i [Eq. (3)], Ḡ0j are the chiral condensate and
higher order chiral susceptibilities, and general Ḡij are μB
derivatives of various chiral observables [26,36,43,44].
This generalization can possibly mitigate the overlap
problem that one might encounter while resumming only
in μB. Further, a systematic expansion of the logarithm of
Eq. (7) in powers of Δβ, Δm, and μB yields the expansion
of the pressure difference, PðT; μBÞ=T4 − PðT0; μBÞ=T4

0, in
powers of ΔT ¼ T − T0 and μB; particular choice of
T0ðμBÞ defined by a line of constant physics in the T-μB
plane reproduces the expansion scheme used in Ref. [45]
(see Supplemental Material [46]). Thus, our method also
generalizes the alternative expansion scheme of Ref. [45]
by resumming up to N-point baryon-current correlations to
all orders in μB and ΔT.
Conclusions.—We have introduced a new method to

compute lattice QCD EOS by resumming contributions of
up to N-point baryon-current correlations to all orders in
μB. When expanded in powers of μB this resummed
partition function exactly reproduces the Taylor expansion
up to OðμNB Þ, plus an infinite series in μB capturing all
possible contributions involving only the n ≤ N-point
baryon-current correlations. This resummation method also
amounts to an approximate reweighting method, thereby
bridging two traditional lattice QCD techniques for μB ≠ 0.
With illustrative high-statistics lattice QCD computations
we have demonstrated that the resummation method shows
improved convergence over the Taylor expansion method.
The method also faithfully captures the severity of the sign
problem as well as reflects the singularities in the complex-
μB plane that are responsible for its eventual breakdown.
Thus the resummation method not only provides a more
convergent lattice QCD EOS but also a more reliable one
by enabling us to judge its validity with increasing μB.
Although the resummation method is more general and
powerful than the Taylor expansion, computationally it is
somewhat simpler. The resummation method relies on the
computations of Dn which come as an intermediate step in
the computations of the Taylor coefficients. Comparison
with the resummed results and the direct lattice QCD
simulations for purely imaginary μB will help us to decide
up to what values ImðμBÞ an analytic continuation using
only the power series of μB is justified and whether Padé-
type analytic continuations [39–41] are necessary to avoid
singularities in the complex-μB plane. We have also
introduced a generalized multiparameter version of the
resummation, Eq. (7), and shown that the method of
Ref. [45] is a special case of this—Taylor expansion of
Eq. (7) in T and μB along a specific line in the T-μB plane.
While the success of the method of Ref. [45] indicates that
our generalized multiparameter resummation will mitigate

the overlap problem to a large extent, the QCD equation of
state presented in this work was not obtained using the
generalized method and might suffer from the overlap
problem.
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