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In one-dimensional quantum gases there is a well known “duality” between hard core bosons and
noninteracting fermions. However, at the field theory level, no exact duality connecting strongly interacting
bosons to weakly interacting fermions is known. Here we propose a solution to this long-standing problem.
Our derivation relies on regularizing the only pointlike interaction between fermions in one dimension that
induces a discontinuity in the wave function proportional to its derivative. In contrast to all known
regularizations our potential is weak for small interaction strengths. Crucially, this allows one to apply
standard methods of diagrammatic perturbation theory to strongly interacting bosons. As a first application
we compute the finite temperature spectral function of the Cheon-Shigehara model, the fermionic model
dual to the celebrated Lieb-Liniger model.
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Duality is an important concept in physics that refers to
alternative descriptions of the same physical situation. This
is particularly useful in cases where duality relates strongly
interacting theories to weakly interacting ones. A proto-
typical example is the Bose-Fermi mapping in 1þ 1
dimensional field theories with pointlike interactions [1–
3] which relate the Lieb-Liniger (LL) [4] and Cheon-
Shigehara (CS) [3] models. Given that the LL model of
strongly interacting bosons has been at the heart of
numerous experimental discoveries over the last two
decades, see, e.g., Refs. [5–14], one would expect the
Bose-Fermi duality to provide a very useful tool for
understanding the observed behaviors. However, the CS
form of the fermionic interaction potential does not allow
for a perturbative analysis and masks the fact that there
exists a weakly coupled regime corresponding to strong
interactions between the LL bosons. There have been
previous attempts to reformulate the CS interaction in
order to clearly exhibit this weakly coupled regime, but
these either violate the nonperturbative duality [15,16]
(even though they allow for first order perturbative calcu-
lations [17,18] as well as Hartree-Fock and random-phase
approximations and low-energy effective field theories
[19–25]) or cannot be formulated in second quantization
[26]. In the following we present a nonperturbative refor-
mulation of the CS model that makes the existence of a
weak coupling regime manifest and allows the full machi-
nery of many-particle perturbation theory to be applied.
At the heart of our approach is the much studied problem

of pointlike interactions in quantum mechanics. It is well
known that bosons interacting in one dimension via a
pointlike potential have a wave function that is continuous
when two bosons coincide, but with a discontinuous
derivative [27]. For two particles the relative motion is
described by the textbook Schrödinger equation

ϕ00ðxÞ þ k2ϕðxÞ ¼ 2γδðxÞϕðxÞ; ð1Þ
with γ a coupling parameter. Integrating over a small
interval −ϵ < x < ϵ around zero one obtains the condition
ϕ0ð0þÞ − ϕ0ð0−Þ ¼ 2γϕð0Þ. However, this manipulation
should be considered as heuristic, since the product of a
distribution with a nonsmooth function is ill defined. The
proper way of analyzing (1) and deriving the discontinuity
of ϕ0ðxÞ at zero is by regularizing the δ distribution,
namely, by replacing it with a smooth function δaðxÞ
satisfying

R
δaðxÞdx ¼ 1 and lima→0δaðxÞ ¼ 0 for x ≠ 0.

Then solution to Eq. (1) is obtained as the limit a → 0 of
the even solution ϕaðxÞ to the corresponding regular
Schrödinger equation. This interpretation is physically
meaningful as a pointlike potential is merely an approxi-
mation of a regular potential whose range is much smaller
than the wavelength of the bosons.
The fermionic counterpart of this problem is less known

and more subtle. For fermions, the only parity symmetric
pointlike potential induces a discontinuity in the wave
function itself (see below) [27–30]. But in contrast to the
bosonic case, the interpretation of this pointlike potential in
terms of (derivatives of) δ functions is problematic [31].
The heuristic analog of the Schrödinger equation (1) would
be [29,32,33]

ψ 00ðxÞ þ k2ψðxÞ ¼ 2β∂x½δðxÞ∂x�ψðxÞ; ð2Þ
where β parametrizes the interaction strength. Indeed, by
integrating x over the interval −ϵ < x < y and then y over
−ϵ < y < ϵ and applying the usual rules for the δ distri-
bution yields ψð0þÞ − ψð0−Þ ¼ 2βψ 0ð0Þ [34]. Through the
Girardeau mapping ϕðxÞ ¼ sgnðxÞψðxÞ [1,3] the fermionic
pointlike interaction (2) is dual to the bosonic one (1) with
β ¼ ð1=γÞ. However, this manipulation of δ’s to obtain the
jump condition is again problematic and requires a more
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careful analysis. In contrast to Eq. (1), this time a simple
regularization of the delta function does not suffice. Indeed,
replacing δðxÞ by a smooth potential δaðxÞ in Eq. (2) does
not yield the expected discontinuity in the limit a → 0 and
one obtains instead a continuous wave function [35]. One
way of making the above manipulations well defined is to
consider a generalization of distributions to discontinuous
test functions [29,31–33,33]. Other generalizations of
distributions were also considered [23]. Although math-
ematically sound, these generalizations suffer from a lack
of physical meaning: one loses the interpretation of the
pointlike interaction as an approximation of a very short
range smooth potential. Moreover, the meaning of Eq. (2)
in second quantization becomes unclear.
The physical and operational definition of this pointlike

interaction in terms of a regularization is thus a nontrivial
problem. It requires the construction of a smooth potential
VaðxÞ such that the odd solution ψaðxÞ to the Schrödinger
equation

ψ 00
aðxÞ þ k2ψaðxÞ ¼ VaðxÞψaðxÞ; ð3Þ

reduces in the limit a → 0 to

ψ 00ðxÞ þ k2ψðxÞ ¼ 0 for x ≠ 0;

ψ 0ð0þÞ − ψ 0ð0−Þ ¼ 0;

ψð0þÞ − ψð0−Þ ¼ 2βψ 0ð0Þ: ð4Þ
Solutions to this problem involving non-Hermitian poten-
tials, nonlocal potentials or pseudopotentials were pro-
posed [36–40]. The first solution in terms of a Hermitian,
regular potential was obtained by Cheon and Shigehara in
Ref. [2] and is of the form

VCS
a ðxÞ ¼

�
1

β
−
1

a

��
δðxþ aÞ þ δðx − aÞ

�
: ð5Þ

Here the δ functions can be regularized on a scale that is
small compared to a [41,42]. Crucially this potential
describes strong interactions between two fermions for
any value of β. This is in spite of the fact that for small β it
results in wave functions that are close to those of free
fermions. While this formulation allowed CS to establish a
duality between a system of interacting fermions and the
LL model, it obscured the fact that strongly interacting
bosons are dual to weakly interacting fermions. Moreover,
by its very nature it precluded any kind of perturbative
calculation. The key aspect of our work is the construction
of a smooth potential VaðxÞ that gives rise to Eq. (4) while
being weak for small β.
A smooth weakly coupled potential for fermions.—For a

coupling strength β > 0 and a regularization parameter
a > 0, we define the following smooth potential

Va;βðxÞ ¼
βσ00aðxÞ

xþ βσaðxÞ
; ð6Þ

with σaðxÞ≡ σðx=aÞ, where σðxÞ is any odd regular
function that satisfies

lim
x→∞

σðxÞ ¼ 1; lim
x→∞

x2σ00ðxÞ ¼ 0;

σ0ð0Þ > 0; ∀ x; σ0ðxÞ ≥ 0: ð7Þ
For example, one can choose σaðxÞ ¼ tanh x=a. Let ψa;βðxÞ
be the odd solution to the Schrödinger equation

ψ 00
a;βðxÞ þ k2ψa;βðxÞ ¼ Va;βðxÞψa;βðxÞ; ð8Þ

with a fixed boundary condition ψa;βð1Þ ¼ 1. The key
result of this Letter is that in the limit a → 0 at fixed β > 0,
the wave function ψa;βðxÞ of the potential (6) satis-
fies Eq. (4).
We now briefly sketch the proof of this statement. The

idea is to treat k2ψa;βðxÞ in Eq. (8) as an inhomogeneous
term in the homogeneous equation obtained for k ¼ 0. The
even ϕþ

a;β and odd ϕ−
a;β independent solutions of this

homogeneous equation are

ϕ−
a;βðxÞ ¼ xþ βσaðxÞ;

ϕþ
a;βðxÞ ¼

1

1þ βσ0aðxÞ
þ ½xþ βσaðxÞ�

×
Z

x

0

dy
βσ00aðyÞ

½yþ βσaðyÞ�½1þ βσ0aðyÞ�2
: ð9Þ

Applying the method of variation of parameters, one
obtains the following self-consistency condition for the
odd solution to Eq. (8) for k ≠ 0

ψa;βðxÞ ¼ k2
X
σ¼�

σϕσ
a;βðxÞ

Z
x

0

dyψa;βðyÞϕ−σ
a;βðyÞ þ Aϕ−

a;βðxÞ;

ð10Þ
where A is an integration constant. An analysis of ϕþ

a;βðxÞ
based on the assumptions (7) shows that it can be bounded
independently of a and x ∈ ½−1; 1� and that for x ≠ 0

lim
a→0

ϕþ
a;βðxÞ ¼ −

jxj
β
: ð11Þ

From this and Eq. (10), Grönwall’s inequality [43] implies
then that ψa;βðxÞ itself can be bounded independently of a
and x ∈ ½−1; 1�. This allows us to commute the limit a → 0
and the integrations in Eq. (10). The resulting self-
consistency equation for lima→0ψa;βðxÞ establishes then
that it satisfies Eq. (4).
N-particle Cheon-Shigehara gas.—Following Refs. [3,44]

the above two-particle result can be readily extended to a gas
of N fermions with Hamiltonian

Hf
a;β ¼ −

XN
j¼1

∂2
xj þ 2

X
j<k

Va;βðxj − xkÞ; ð12Þ

which from now on wewill refer to as CS gas. The reasoning
goes as follows. First, one observes that since the eigenstates
ψf
a;βðx1;…; xNÞ are antisymmetric functions of x1;…; xN it

suffices to know themonD ¼ fx1 < … < xNg. Second, one
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notes that, because the potential (6) satisfies Eq. (4) when
a → 0, themany-bodywave function fulfills

P
j ∂2

xjψ
f
0;β ¼ 0

insideD, and obeys the following conditions at the boundary
of D:

ψ f
0;βjxj¼x−jþ1

¼ −
β

2
½∂xjþ1

− ∂xj �ψ f
0;βjxj¼x−jþ1

. ð13Þ

Finally, performing the Girardeau mapping [1,45,46]

ψb
2=βðx1;…; xNÞ ¼ ψf

0;βðx1;…; xNÞ
Y
j<k

sgnðxj − xkÞ; ð14Þ

one finds that the functionψb
2=β exactly satisfies the conditions

of the LL eigenstates at the boundary of D [44]. This
establishes that when a → 0 at fixed β, Hf

a;β is equivalent
to the LL Hamiltonian

Hb
c ¼ −

XN
j¼1

∂2
xj þ 2c

X
j<k

δðxj − xkÞ; ð15Þ

with β ¼ 2=c. Having established that Eq. (12) provides a
dual description toEq. (15)we now show that our formulation
allows one to carry our perturbative calculations in the large-c
limit that are in agreementwith exact results.Whenβ ¼ 0, the
energy levels of the free fermion Hamiltonian (12) on a ring
of size L are given by

P
λi∈λ λ

2
i with λ any subset of

f2πn=L; n ∈ Zg with N elements. In the thermodynamic
limit L → ∞, they are parametrized by a particle density
0 ≤ ρðλÞ ≤ 1=ð2πÞ. Let us now fix such a state at β ¼ 0
through its particle density ρ and compute perturbatively in β
the energy levels of (12) at fixed a. The energy per site eaðβÞ
can be written as

eaðβÞ ¼ eð0Þa ðβÞ þ eð1Þa ðβÞ þ eð2Þa ðβÞ þOðβ3Þ; ð16Þ

where the successive orders in perturbation theory are

eð0Þa ðβÞ ¼
Z

∞

−∞
dλρðλÞλ2;

eð1Þa ðβÞ ¼
Z

∞

−∞
dλdμρðλÞρðμÞ½V̂a;βð0Þ − V̂a;βðλ − μÞ�;

eð2Þa ðβÞ ¼ π

Z
∞

−∞
dλdμdνρðλÞρðμÞρhðλþ νÞρhðμ − νÞ

×
½V̂a;βðλ − μþ νÞ − V̂a;βðνÞ�2

νðμ − λ − νÞ : ð17Þ

Here V̂a;βðλÞ ¼
R∞
−∞ dxVa;βðxÞeiλx and ρhðλÞ ¼ 1=ð2πÞ −

ρðλÞ is the hole density. Expanding the potential (6) in β at
fixed a and considering a → 0 afterwards, we have up to
OðaÞ þOðβ3Þ corrections

eð1Þa ðβÞ ¼ 2βDE
�
−1þ β

2a

Z
∞

−∞
dxσ0ðxÞ2

�
; ð18Þ

eð2Þa ðβÞ ¼ 3βDE
�
1 −

β

3a

Z
∞

−∞

dω
2π

½σ̂0ðωÞ�2
�
: ð19Þ

Here D ¼ R
dλρðλÞ and E ¼ R

dλρðλÞλ2 are, respectively,
the particle density and the (unperturbed) energy density of
themacrostate parametrized by ρðλÞ.We observe that the first
and second order contributions are both divergent in 1=a, but
remarkably, using Parseval’s identity we find that their sum is
in fact finite:

eaðβÞ ¼ ð1 − 2βDþ 3β2D2ÞE þOðaÞ þOðβ3Þ: ð20Þ
The compensation is due to the specific form of the potential
(6). The expression (20) agrees with the exact Bethe ansatz
result for the LL model with β ¼ 2=c at order 1=c2. Our
calculation shows that all energy levels of Eq. (12) can be
computed perturbatively in β at fixed a and then the regulator
a can be sent to 0 order by order in β to order β2.
Note that the result (20) allows one to study the thermo-

dynamics of the gas (12) up to order 1=c2. Indeed, one can
calculate the free energy at temperature T,

Fa;β ¼ tr½e−Hf
a;β=T �; ð21Þ

expanding the trace in terms of the noninteracting basis.
One can then use Eq. (20) and proceed as in the thermo-
dynamic Bethe ansatz (TBA) treatment [47,48]. For exam-
ple, in this way one finds that, up to order 1=c2, the thermal
energy density is given by the expression (20) with ρ being
the thermal root density satisfying the Yang-Yang equation
expanded at order c−2.
Cheon-Shigehara field theory.—The Hamiltonian (12)

(on a ring of length L) can be expressed in second
quantization as

Hf
a;β ¼

X
p

ðp2 − μÞψ†
pψp þ

X
p

Wa;βðpÞψ†
p1
ψ†
p2
ψp3

ψp4
;

ð22Þ
where ψ†

p and ψp are canonical Fermi fields in momentum
space, and we have introduced the short-hand notation
p≡ ðp1;…; p4Þ. The interaction vertex in Eq. (22) is
given by

Wa;βðpÞ ¼
1

4L
δp1þp2−p3−p4;0

×
X

P;Q∈S2

sgnðPQÞV̂a;βðpPð1Þ − pQð1Þþ2Þ; ð23Þ

where S2 is the group of permutations of two elements.
For small β the theory (22) can be analyzed using

standard diagrammatic perturbation theory. Let us consider
in particular the thermal propagator

Gðτ; kÞ ¼ −
tr½Tτ½eτH

f
a;βψke

−τHf
a;βψ†

k�e−H
f
a;β=T �

tr½e−Hf
a;β=T �

: ð24Þ

The usual procedure (see, e.g., Ref. [49]) is to exploit the
antiperiodicity of Eq. (24) for τ ↦ τ þ 1=T, and consider
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its Fourier coefficients, denoted by Gðωn; kÞ, where ωn ¼
2πTðnþ 1=2Þ are called Matsubara frequencies. These
coefficients can be written in the following Dyson form

Gðωn; kÞ ¼
1

iωn − k2 þ μ − Σðωn; kÞ
; ð25Þ

where the proper self energy, Σðωn; kÞ, is defined as the
sum of all irreducible Feynman diagrams with two ampu-
tated legs [49]. The self energy encodes all information

about the thermodynamics of the system as well as very
relevant information about its dynamics. Indeed, it can be
used to determine both the free energy and the spectral
function [50]. Specifically, the latter is expressed as
Aðω; kÞ ¼ −2Im½GRðω; kÞ�, where the Fourier transform
of the retarded Green’s function GRðω; kÞ is obtained by
performing the analytic continuation iωn ↦ ωþ i0þ in
Eq. (25). For the theory (22), considering contributions up
to order β2, we find

ð26Þ

where the incoming and outgoing legs (dashed lines) are amputated [30]. Remarkably, evaluating these diagrams we find
that, in analogy to what happens for Eq. (20), the 1=a divergences in the second order contributions compensate and the
final result does not require further regularization [30]. Specifically, in the thermodynamic limit we have

Σðωn; kÞ ¼ −2βðA2 þ A0k2Þ −
2β2

T

Z
dq
2π

ðA2 þ A0q2Þðk − qÞ2nðqÞ½1 − nðqÞ�

þ 2β2
Z

dq2
2π

dq3
2π

½ðk − q3Þ2 − ðq2 − q3Þ2�2
iωn þ q22 − q23 − q̄24 þ μ

½nðq3Þnðq̄4Þ − nðq2Þnðq̄4Þ − nðq2Þnðq3Þ�

− iβ2
Z

dq2
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðiωn − k2 þ μÞ þ ðk − q2Þ2

q
ðk − q2Þ2nðq2Þ; ð27Þ

where we chose the branch cut of the square root to lie
along the positive real axis, q̄4 ¼ kþ q2 − q3, and

nðpÞ ¼ 1

1þ eðp2−μÞ=T ; Am ¼
Z

dp
2π

pmnðpÞ: ð28Þ

To the best of our knowledge (27) is the first calculation of
the self energy in the CS model at second order in β—
where interactions generate a non-vanishing imaginary
part—and represents our second main result. We verified
that (i) the spectral function Aðω; kÞ obtained from Eq. (27)
fulfils the exact sum rule

R
dω=ð2πÞAðω; kÞ ¼ 1; (ii) the

internal energy per volume computed using (27) agrees up
to order 1=c2 with the exact result for the LLmodel [47,48].
The nontrivial effects of the interactions are best appre-
ciated by considering the spectral function, cf. Fig. 1. We
see that as a result of the interactions the fermions created
by ψ†

k acquire a finite lifetime and the dispersion gets
renormalized. We note that the appearance of a finite
lifetime is not in contradiction with the integrability of
the theory (22) because the integrability-protected stable
quasiparticles differ from the fermions created by ψ†

k for
finite c [51].
Discussion.—In this Letter we presented a one-

dimensional quantum mechanical potential that induces a
discontinuity in the wave function proportional to its
derivative and, at the same time, can be expanded

FIG. 1. Spectral function of the CS gas Aðω; qÞ for β ¼
2=c ¼ 0.5 (left) and β ¼ 1 (right) in an equilibrium state at
temperature T ¼ 1 and chemical potential μ ¼ 1. The color
scale is the same for both plots. The free fermion β ¼ 0

spectral function is 2πδðω − q2 þ μÞ.
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perturbatively for small but finite interaction strengths. This
addresses the long-standing problem of how to best
regularize pointlike interactions in quantum mechanics.
We used this potential to obtain a reformulation of the
Cheon-Shigehara gas, the fermionic theory dual to the
Lieb-Liniger model, that makes it manifest that strongly
interacting bosons correspond to weakly coupled fermions.
Our results open the door to the systematic analysis of
strongly interacting bosons away from the hard-core limit
by means of perturbation theory, going considerably
beyond the current state of the art. As a first application
we have obtained the spectral function of the CS model at
order 1=c2, displaying the previously inaccessible broa-
dening shown in Fig. 1.
Our work can be generalized in a number of ways. It can,

for example, be directly extended to treat Bose-Fermi
dualities in multispecies systems [52], allowing one to
access cases of high experimental relevance [5–13,53] that
up to now have been treated only in the limit of infinite
repulsion [54–57], via low-energy approximations [58–62],
or in the hydrodynamic regime [13,14,63]. Crucially, our
method does not rely on integrability and allows one to
study any such strongly coupled theory. The case of
attractive interactions corresponding to β < 0 is not
covered by our potential (6) and deserves attention. On
physical grounds, we expect a drastic change of potential
from small positive to small negative β as it corresponds to
going from a Tonks-Girardeau to a Super-Tonks-Girardeau
gas. Applying our results to a strong coupling expansion in
the LL model is particularly appealing due to the recent
accounts of uniform convergence—in space and time—of
the perturbative series for correlation functions both in [64]
and out of equilibrium [65]. For instance, this opens the
door to a systematic investigation of quantum quenches,
explicitly accessing the late time regime where homo-
geneous systems are expected to locally relax [66] and
inhomogeneous ones to follow the predictions of general-
ised hydrodynamics [67–69]. This could potentially lead to
ab initio derivations of these expectations in the presence of
interactions and a full characterization of the relaxation
mechanisms, a task that has currently been accomplished
only for a special quantum cellular automaton [70,71].
Finally, our work paves the way for establishing the Bose-
Fermi mapping at an operatorial level directly in the
(regularized) respective field theories. Such a mapping is
highly desirable in order to be able to calculate quantities
like the boson propagator in the fermionic setting.
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