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We consider line defects in d-dimensional conformal field theories (CFTs). The ambient CFT places
nontrivial constraints on renormalization group (RG) flows on such line defects. We show that the flow on
line defects is consequently irreversible and furthermore a canonical decreasing entropy function exists.
This construction generalizes the g theorem to line defects in arbitrary dimensions. We demonstrate our
results in a flow between Wilson loops in four dimensions.
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Introduction.—In lattice systems, in order to understand
the physics on different length scales, we perform block-
spin transformations, eliminating degrees of freedom that
live at short distances. This process obviously reduces the
overall number of degrees of freedom. But one can ask
whether this reduces the number of degrees of freedom per
lattice site, which is much less clear. In quantum field
theory, the number of degrees of freedom per lattice site is
roughly speaking the number of fields and this raises the
question of whether the number of fields decreases as we
probe physics of longer and longer distances.
To address these questions precisely one has to give a

nonperturbative definition of what the “number of fields”
means and provide a prescription to evaluate it even when
there is no weakly coupled description in terms of fields.
Starting from the work of Zamolodchikov on the c function
in two dimensions [1], several such proposals and results
were discussed in diverse dimensions [2–24].
The focus of this Letter is the physics of one-dimensional

defects in a CFT. Such defects can undergo nontrivial
renormalization group flows while affecting the bulk very
little far away from the defect. A fewknown examples of this
kind include Wilson or ‘t Hooft lines in 4D gauge theories
[25] and holography [26,27], symmetry defects and impu-
rities in 3D quantum critical systems [28–33], etc. In two
dimensions, line defects correspond to boundaries or inter-
faces and appear naturally as the low-energy limit of lattice
systems with impurities (see, for instance, Refs. [34–38]).
There is already some extensive work on renormalization

group flows on various defects [39–56]. For our purposes, it
is important to highlight the conjecture of Affleck and

Ludwig [39] for the decreasing entropy function on line
defects in two dimensions and its subsequent proofs [42]
and [48]. Here we will discuss the properties of line de-
fects in arbitrary dimensions. We will define an entropy
function and show that it monotonically decreases. In the
Supplemental Material [57] we show how our result applies
to a nontrivial flow between two different conformal
Wilson lines in super Yang-Mills (SYM) theory in four
dimensions.
The main idea we employ is that surrounding the line

defect with conformal charges leads to nontrivial identi-
fications in theory space when the defect is nonconformal.
This can be expressed in terms of constraints on the dilaton
living on the line defect. We show that these constraints
translate to a monotonic entropy function.
DCFTs.—We consider local, reflection-positive Euclidean

conformal field theories (CFTs) in d ≥ 2 dimensions. We
will be interested in CFTs in the presence of a line defect
which preserves unitarity and locality.Wewill be interested
in infinite straight lines or circular defects. At the fixed
point of the (defect) renormalization group flow, the
straight line defect preserves the subgroup SLð2;RÞ ×
SOðd − 1Þ of the full conformal group. In this case the
system is called a defect CFT (DCFT). In d ¼ 2, conformal
line defects additionally preserve one copy of the Virasoro
algebra.
DCFTs share many of the standard properties of CFTs.

However, in general, the line defect does not support a
stress tensor [58–60]. This statement really means that there
is no possibility to localize energy on the line defect and
energy always ends up being smeared into the bulk. The
bulk stress tensor Tμν

b obeys the following Ward identity
(It is convenient to consider normalized correlation func-
tions, so hTμν

b i really stands for hTμν
b Di=hDi, whereD is the

defect operator.) [47,59,61,62]:

∇μT
μν
b ¼ −δd−1D nνiD

i; ð1Þ
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where δd−1D is a delta function localized at the defect, fnνig is
a basis of d − 1 unit vectors normal to the defect, and Di is
the displacement operator [47,59] (The defect D, and the
displacement operator Di, are distinguished by the super-
script i.), which parametrizes the breaking of translations in
the directions normal to the defect. Finally, we mention that
all bulk correlation functions may be systematically decom-
posed into defect correlators via the bulk-to-defect OPE
[36,63]. This allows us to study the DCFT data via a
systematic bootstrap approach [59,64,65], similar to the
one usually adopted in standard CFTs [66–68].
It will be convenient for our purposes to consider the

expectation of the SLð2;RÞ charges wrapping the defect.
These are obtained by integrating the stress tensor con-
tracted with the appropriate Killing vector at a fixed
distance ε from the defect:

QξðDÞ ¼
Z
ε
dd−1ΣμhTb

μνiξν: ð2Þ

By conformal invariance we expect Eq. (2) to yield a
vanishing result for both a straight line defect and a circular
one. However, due to a subtlety with the action of
conformal transformations on the point at infinity, for
the straight line geometry the conformal charges vanish
only when the distance between the integration surface and
the defect diverges sufficiently fast as xd → �∞ [25]. This
issue is presumably related to the disagreement between the
expectation value of circular and linear Maldacena-Wilson
loops in N ¼ 4 SYM [69–71]. We provide a detailed
discussion regarding this subtlety in the Supplemental
Material [57]. No issues of this sort arise for circular
defects, hence we will focus on this geometry in what
follows.
Let us consider for concreteness a circular defect of

radius R centered around the origin on the ðx1; x2Þ plane
x3 ¼ … ¼ xd ¼ 0. The SLð2;RÞ Killing vectors preserved
by the circle are

ξμðaÞ ¼
1

2
½δμaðRþ x2=RÞ − 2xμxa=R�;

ξμðϕÞ ¼ δμaϵabxb; ð3Þ

where a ¼ 1, 2 and indices are raised or lowered with the
Euclidean metric. Here, ξμðaÞ are linear combinations of

translations and special conformal transformations on the
defect plane, while ξμðϕÞ generates rotations in the ðx1; x2Þ
plane. In this geometry, there is no issue with the boundary
condition at infinity and, consequently, the expectation
values of the SLð2;RÞ charges on a surface wrapping the
defect (see Fig. 1) vanish,

QξðDÞ ¼ 0 ðcircular defectÞ: ð4Þ

The statement (4) can be checked using the explicit form of
the stress-tensor one-point function in a circular geometry,
which depends on a unique constant [72] hD (see, e.g.,
Refs. [59,79] for the explicit expressions). In particular, in
contrast to the infinite line, every point of the surface can be
brought arbitrarily close to the defect compatibly with the
identity (4) [80]. For this reason in the following we will
focus on circular defects.
Defect RG.—The main goal of this work is to study

defect renormalization group (DRG) flows. A DRG may be
triggered perturbing a DCFT with one or more relevant
defect operators. For instance, we may consider a defect
operator O with ΔO < 1:

SDCFT → SDCFT þM1−ΔO
0

Z
D
dσOðσÞ; ð5Þ

where
R
D stand for integration along the defect and M0 is

the mass scale of the flow. Conformal invariance [i.e.,
SLð2;RÞ transformations that preserve the defect] is now
explicitly broken by the scale M0 to just translations along
the defect.
Because of the locality of the bulk CFT, the bulk stress

tensor remains conserved and traceless (up to possible bulk
trace anomalies in curved space) away from the line.
However, now a defect stress tensor TD is allowed. In
other words, energy can now be stored on the defect. Not
only TD is allowed, such an operator must always exist
away from the fixed points of the defect. The existence of
the operator TD is the reason that SLð2;RÞ charges are no
longer conserved. Since TD is localized to the defect, what
we mean by saying that SLð2;RÞ charges are no longer
conserved is that, if the charges are integrated on surfaces
that intersect the defect, then they are not invariant under
small deformations.
Invariance under translations along the defect implies

that Eq. (1) in the presence of TD is modified to

∇μT
μν
b ¼ −δd−1D

_Xν _TD − δd−1D nνiD
i; ð6Þ

where XμðσÞ is the embedding function describing the
defect location and the dot stands for derivatives with
respect to the line coordinate σ, so that _Xν is a tangent
vector to the defect. (Here we are assuming that the defect

FIG. 1. An illustration of a toroidal surface wrapping a circular
defect.
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has a trivial induced submanifold metric gD ¼ _Xμ _Xνgμν ¼
1 to simplify the notation.) Equation (6) merely expresses
the energy balance between the bulk and the defect.
Spurion analysis and the dilaton.—As it often happens in

the study of RG flows, it is useful to promote the
renormalization group scale to a function of position
MðσÞ ¼ M0eΦðσÞ [81,82], where ΦðσÞ is a dimensionless
background dilaton field. To linear order, the partition
function of the theory depends on the dilaton through to the
defect energy-momentum tensor [83]:

logZjΦþδΦ ¼ logZjΦ þ
Z
D
dσδΦðσÞhTDðσÞiΦ

þ 1

2

Z
D
dσ1

Z
D
dσ2δΦðσ1ÞδΦðσ2Þ

× hTDðσ1ÞTDðσ2ÞiΦ þ…: ð7Þ
The background dilaton field acts a source for the theory.
This in turn modifies the conservation equation (6) as
follows [61,62]:

∇μT
μν
b ¼ −δd−1D

_Xνð _TD − _ΦTDÞ − δd−1D nνiD
i: ð8Þ

If one views the coordinate along the defect as time, then a
nontrivial ΦðσÞ renders the theory time dependent and (8)
relates the nonconservation rate of the charge associated
with translations along the defect with the derivative of the
dilaton source.
A position-dependent mass scale breaks the SLð2;RÞ

symmetry completely. What we gain by introducing the
general background fieldΦðσÞ is that SLð2;RÞ allows us to
relate different theories instead of directly placing con-
straints on a given theory. Indeed, we will use Eq. (8) in
what follows to derive some nontrivial identities relating
theories with different values for the source ΦðσÞ.
RG flows induced by the broken charges.—It is crucial to

realize that the identity (4) holds irrespectively of the
breaking of scale invariance on the defect [i.e., it holds for
any ΦðσÞ]. This is because the charges wrapping the defect
do not intersect it and hence such charges are oblivious to
what happens on the defect and they remain invariant under
small deformations. They can be moved off to infinity
where they annihilate the vacuum. (To see that, one can
realize the wrapping surface as the difference between two
Sd−1 surfaces outside and inside the loop.)
As we explained, on general grounds one expects that

SLð2;RÞ transformation can be reabsorbed into a trans-
formation of the dilaton ΦðσÞ, leading to relations between
different theories. This can bemade precise by using Eq. (4).
To that end, consider shrinking the radius of the topological
surface enclosing the defect (see Fig. 1). It is clear from
Gauss’s law that the only contribution in the integration of
the stress tensor arises from the right-hand side in Eq. (8).
We therefore conclude that Eq. (4) implies the following
relation [84]:

0 ¼ QξðDÞ ¼
Z

dd−1ΣμhTb
μνiξν

¼
Z
D
dσð_ξD þ ξD _ΦÞhTDi; ð9Þ

where in the second line we integrated by parts and we
denoted by ξD the projection of the Killing vectors (3) on the
defect. We crucially used the fact that the normal compo-
nents of the SLð2;RÞKilling vectors vanish on the defect. In
fact, for more general conformal Killing vectors which do
not leave the loop invariant, an analogous identity picks an
additional contribution from the displacement operator in
Eq. (8) but we do not study these identities here.
Because of the linear coupling between the defect

stress tensor and the dilaton, we may interpret Eq. (9) as
an equivalence between defects with different DRG
scales MðσÞ:

Φ ∼Φþ αð_ξD þ ξD _ΦÞ jαj ≪ 1; ð10Þ
for any SLð2;RÞ Killing vector ξ and any infinitesimal α.
This observation is most useful when considering the
expansion of the partition function (7) around Φ ¼ 0.
Demanding the equivalence (10) at each order in the field
expansion we then find an infinite number of identities for
the correlation functions of the defect stress tensor. At
second order in the field expansion we obtain the following
one (omitting the subscript Φ ¼ 0 from now on):Z
D
dσξDðσÞ _ΦðσÞhTDðσÞi

¼−
Z
D
dσ1

Z
D
dσ2 _ξDðσ1ÞΦðσ2ÞhTDðσ1ÞTDðσ2Þi: ð11Þ

Crucially, this identity holds for any ΦðσÞ. Notice that the
right-hand side of Eq. (11) for generic choices of the dilaton
profile is naively divergent. Our arguments however ensure
that these identities must hold in any regularization scheme
which preserves the invariance of the partition function
under diffeomorphisms and defect reparametrizations.
At this point it is useful to specify a cylindrical system of

coordinates on the defect: x1 ¼ R cosϕ, x2 ¼ R sinϕ and
set σ ¼ Rϕ. The projection of the three Killing vectors in
Eq. (3) reads, respectively,

ξD ¼ − sinϕ; ξD ¼ cosϕ; ξD ¼ −1: ð12Þ

Equation (11) is trivial for ξD ¼ −1, but provides non-
trivial constraints for the other two choices, which lead
to identical constraints. A particularly useful relation is
obtained choosing ξD ¼ − sinϕ and Φ ∝ cosϕ in Eq. (11).
This leads to

R
Z
D
dϕhTDðϕÞi

¼R2

Z
D
dϕ1

Z
D
dϕ2hTDðϕ1ÞTDðϕ2Þicosðϕ1−ϕ2Þ; ð13Þ
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wherewe used trigonometric identities and invariance under
translations along the defect to simplify both sides.
Equation (13) will be very useful in providing a gradient
formulafor theDRGflowofasuitablydefineddefectentropy.
The defect entropy.—Our discussion thus far focused on

defects in flat space, but all our considerations apply on all
conformally equivalent manifolds. These include the d-
dimensional sphere of radius R, with the defect spanning a
maximal circle, and the cylinder R × Sd−1, with the defect
on the equator of Sd−1 at a fixed value of the Euclidean
time τ ¼ log x2=R ¼ 0.
We can use any of these geometries to define a defect g

function, gðM0RÞ, in terms of the partition function in the
presence of the defect, normalized by the partition function
without it:

log gðM0RÞ ¼ logZM − logZðCFTÞ
M ; ð14Þ

where logZðCFTÞ
M is the partition function of the theory

without the defect [85]. The defect contribution g depends
only on the dimensionless product M0R and it reduces to a
constant at the fixed points (in a sense that we will
explain below).
We must now ask to what extent is g well defined at the

fixed points and away from them. log g can be shifted by the
addition of a cosmological constant counterterm

R
dσM0 ∼

M0R with an arbitrary coefficient. All other nontrivial
geometric invariants which are analytic around the flat
metric have dimension larger than 1 and cannot appear as
counterterms. Therefore no additional ambiguities exist in
d > 2 (we will discuss d ¼ 2 more in detail below).
Therefore, one can obtain a scheme-independent quantity
which we will refer to as the defect entropy, defined as [86]

sðM0RÞ ¼
�
1 − R

∂
∂R

�
log gðM0RÞ: ð15Þ

At the fixed points, sðM0RÞ is a pure number which is
scheme independent. It is equal to the perimeter-independent
contribution to log gðM0RÞ at the fixed point.Wewill refer to
these fixed point values of g as gUV, gIR, respectively.Wewill
show that sðM0RÞ decreases monotonically under DRG,
implying gUV > gIR.
In d ¼ 2 Eq. (15) coincides with the interface contribu-

tion to the thermal entropy of the theory. To make the
connection with d ¼ 2 precise, one needs to remember that
in d ¼ 2we can also allow the counterterm

R
dσK, whereK

is the extrinsic curvature [88]. Such a term vanishes for a
maximal circle in S2 and on R × S1 and therefore all
our conclusions hold unaltered on those manifolds.
Furthermore CPT invariance implies that the coefficient
of this counterterm should be purely imaginary. Therefore
the definition in Eq. (15) is meaningful also in flat space
provided we focus on the real part of the defect entropy.

The gradient formula.—We now have all the ingredients
to derive a gradient formula for the DRG flow of the defect
entropy. Since g depends onM0R only, for constant dilaton
Φ, it follows that g depends on the combination RM0eΦ.
We may therefore write the variation of the defect entropy s
under a change in the mass scale as follows:

M0

∂
∂M0

sðM0RÞ ¼
��

d
dΦ

−
d2

dΦ2

�
log gðRM0eΦÞ

�
Φ¼0

:

ð16Þ
Using the expansion (7) for constant Φ we then can write
Eq. (16) in terms of correlation functions of the defect stress
tensor

M0

∂
∂M0

sðM0RÞ ¼ R
Z
D
dϕhTDðϕÞi

− R2

Z
D
dϕ1

Z
D
dϕ2hTDðϕ1ÞTDðϕ2Þi:

ð17Þ
Equation (17) may not seem very useful at first sight. It is
not manifestly sign definite, nor is it manifestly finite. To
clarify these issues, we can rewrite the first term using
Eq. (13). We obtain

M0

∂s
∂M0

¼ −R2

Z
D
dϕ1

Z
D
dϕ2hTDðϕ1ÞTDðϕ2Þi½1− cos ðϕ1 −ϕ2Þ�:

ð18Þ
The right-hand side of Eq. (18) is free of divergences and
ambiguities due to the double zero of 1 − cos ðϕ1 − ϕ2Þ.
Furthermore, (18) is manifestly negative in a reflection
positive theory (note that this also applies to a connected
2-point function, as on the right-hand side of Eq. (18)).
Therefore, we deduce that s monotonically decreases along
defect RG flows, implying that the UVand IR DCFT satisfy

gUV > gIR: ð19Þ

Equation (18) additionally implies that s does not depend
on the marginal parameters on the defect [91].
In d ¼ 2, Eq. (19) was originally conjectured to hold for

boundaries (and therefore, using the folding trick, for
interfaces) by Affleck and Ludwig [37,39]. In d ¼ 2, in
the regime where the DRG flow can be described in terms
of finitely many couplings and beta functions, a gradient
formula equivalent to Eq. (18) was proposed in the context
of string field theory [98–102]. It was then established
by Friedan and Konechny [42]. An alternative proof of
Eq. (19) in d ¼ 2 was also given [48] using quantum infor-
mation methods. (See, for instance, also Refs. [41,44,103]
for a holographic setup.) Our work provides an extension of
those results to line defects in an arbitrary number of
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dimensions. We also remark that the inequality (19) was
recently conjectured in Ref. [50] for arbitrary d. Another
remark is that the trivial line has g ¼ 1. However, it may
a priori be that g < 1 for some nontrivial lines, as some-
times happens in two dimensions [104,105].
Equation (19) was extensively checked in d ¼ 2, see,

e.g., Refs. [37–39,106]. We additionally verified our results
(18) and (19) in several concrete examples, including a flow
betweenWilson lines inN ¼ 4 SYM previously studied in
Refs. [27,107]. Details can be found in the Supplemental
Material [57].
Finally, we remark that the partition function of higher-

dimensional defects is subject to further ambiguities
besides a cosmological constant, rendering a generalization
of our arguments not straightforward. For two- and four-
dimensional defects irreversibility of the DRG flow
was proven via different means, using Weyl anomaly
matching [47,55].
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