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We find rotating black hole solutions in the Randall-Sundrum II (RSII) model, by numerically solving a
three-dimensional PDE problem using pseudospectral collocation methods. We compute the area and
equatorial innermost stable orbits of these solutions. For large black holes compared with the AdS length
scale l the black hole exhibits four-dimensional behavior, approaching the Kerr metric on the brane, while
for small black holes, the solution tends instead towards a five-dimensional Myers-Perry black hole with a
single nonzero rotation parameter aligned with the brane. This departure from exact four-dimensional
gravity may lead to different phenomenological predictions for rotating black holes in the RSII model to
those in standard four-dimensional general relativity. This Letter provides a stepping stone for studying
such modifications.
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Introduction.—For some time there has been great
interest in the idea that our Universe is a brane embedded
in a higher dimensional space. In most such theories, the
extra dimensions are compact and very small, so that four-
dimensional physics is reproduced. The five-dimensional
RSII braneworld model [1], on the other hand, contains
an extra dimension that is noncompact but warped so that
the low-energy behavior of gravity on the brane still yields
four-dimensional general relativity. The Randall-Sundrum
paradigm [2], was first introduced as a mechanism for
solving the hierarchy problem: due to the warping factor,
the effective mass of an object in the four-dimensional
theory is exponentially suppressed compared with its
proper five-dimensional mass, leading to a large hierarchy
between gravity and the other forces. Whilst matter fields
may be restricted to the brane, gravity (at least at higher
energies) must be able to propagate through all dimensions.
This motivates finding black hole solutions in the RSII
model, since these may yield different phenomenological
predictions to ordinary four-dimensional general relativity.
Initially there was some debate over whether stable, large

black holes on the brane could exist. Because of arguments
from the AdS/CFT correspondence [3–5], the low-energy
theory on the brane can be described by gravity coupled to
a large N, strongly coupled CFT [6–8]. Therefore a black
hole in the five-dimensional RSII bulk would correspond
holographically to a quantum-corrected black hole on the
brane [9]. It was thought that the black hole would quickly

evaporate due to extra radiation arising from the CFT
degrees of freedom, meaning any bulk black hole solution
would be time dependent. However, it was contended that
this argument neglects the strong coupling of the CFT [10].
The debate was settled in Ref. [11], where static, stable
black hole solutions on the brane were found for both small
and large radii. This solution is closely related to black
droplets and funnels [12–23], which are the gravitational
duals to the limit where the CFT decouples from gravity.
In order for the RSII model to be phenomenologically

viable it must admit not only static black hole solutions, but
also rotating ones. In this Letter we present the first fully
backreacted, rotating black hole solution in the RSII model,
by utilising the method pioneered in Ref. [24]. We were
able to find solutions over a two parameter space. One
parameter runs over the possible angular velocity of the
black hole, and we were able to find solutions close to
extremality. The second parameter controls the size of the
black hole relative to the five-dimensional AdS length, l.
We found that for large rotating RSII black holes, the
induced metric on the brane closely resembles the four-
dimensional Kerr black hole, while small rotating RSII
black holes exhibit five-dimensional behavior, approaching
the five-dimensional Myers-Perry black holes [25] with a
single nonzero rotation aligned with the brane.
This transition from four-dimensional to five-dimen-

sional behavior means that finite-sized RSII black holes
have slightly different induced geometry on the brane to
the usual four-dimensional Kerr black hole, and thus will
lead to different phenomenological predictions for four-
dimensional observers. Since the black holes in our
Universe are expected to be rotating and uncharged, this
provides the possibility of testing the RSII model via
astrophysical measurements of black holes as well as in
future lepton colliders, such as the International Linear
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Collider [26,27] and the Compact Linear Collider [28].
For example, we show that the radius of the innermost
stable equatorial circular orbits (ISCOs) predicted by our
solutions differ slightly to that of the Kerr black hole of the
same rotation.
Constructing rotating RSII black holes.—We seek a

solution to the five-dimensional Einstein equation with
negative cosmological constant,

Rab þ
4

l2
gab ¼ 0; ð1Þ

where l is the five-dimensional AdS radius. To motivate
our choice of coordinates, we first consider AdS5 in
Poincaré coordinates:

gAdS5 ¼
l2

z2
½−dt2þdz2þdr2þr2ðdθ2þsin2θdφ2Þ�; ð2Þ

where the last two terms correspond to the line element of
the round two-sphere with θ ∈ ð0; πÞ, φ ∼ φþ 2π being the
standard polar and azimuthal angles, respectively.
The RSII model with no matter can be thought of as a

part of the Poincaré patch of AdS between the Poincaré
horizon and a constant z slice (the brane), with a Z2

reflection symmetry across the brane. This motivates taking
the transformations,

z ¼ Δðx; yÞ
1 − y2

; r ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − x2

p

1 − y2
; ð3Þ

where Δðx; yÞ ¼ 1 − x2 þ β−1ð1 − y2Þ. Now the coordi-
nates x ∈ ð0; 1Þ; y ∈ ð0; 1Þ parametrize the space between
a brane at x ¼ 1 (which is a surface of constant z ¼ β−1),
and the Poincaré horizon at y ¼ 1, and so are a natural set
of coordinates to find solutions on the RSII brane. The
metric becomes

gAdS5 ¼
l2

Δðx; yÞ2
�
−hðyÞ2dt2 þ 4y2

hðyÞ2 dy
2

þ 4

gðxÞ dx
2 þ x2gðxÞdΩ2

ð2Þ

�
; ð4Þ

where, here and throughout, gðxÞ¼2−x2 and hðyÞ¼1−y2.
These were the coordinates used by Ref. [11] to find a static
black hole on the brane. In our case, we seek to find a
rotating black hole on the brane, and hence our solution will
be neither static nor spherically symmetric. However, we do
assume that the solution will be stationary and axisymmetric
(with Killing vector fields ∂t and ∂ϕ, respectively), and that
it will be invariant under the transformation of simulta-
neously swapping the signs of t and ϕ. The most general
ansatz, with a bifurcate Killing horizon at y ¼ 0, satisfying
these assumptions is

ds2 ¼ l2

Δðx; yÞ2
�
−
hðyÞ2y2PðyÞ

Aðy; uÞ F1dt2 þ
4F2

PðyÞhðyÞ2 dy
2 þ 4F5

gðxÞ
�
dxþ F8

hðyÞ dyþ F9du

�
2

þ x2gðxÞ
�

4F3

2 − u2

�
duþ F7

xhðyÞ dy
�

2

þ ð1 − u2Þ2Sðx; y; uÞF4ðdϕþ y2Wðy; uÞF6dtÞ2
��

; ð5Þ

where the coordinate u measures the inclination from the
equatorial plane and, in pure AdS5, is related to the
usual polar angle on the S2 via uð2 − u2Þ1=2 ¼ cos θ.
The unknown functions Fi for i ¼ 1;…; 9 depend on
fx; y; ug, while A, P, S, and W are known functions, given
in the Supplemental Material [29], depending on a param-
eter α, which controls the horizon angular velocity of the
braneworld black hole. The coordinate domain is the cube
fx; y; ug ∈ ð0; 1Þ3.
The DeTurck method: In order to solve the Einstein

equation (1) we use the DeTurck trick [24,31,32].
Effectively, we fix the gauge by adding on a term and solve
the resulting equation, which is usually called the Einstein-
DeTurck equation or the harmonic Einstein equation:

Rab þ
4

l2
gab −∇ðaξbÞ ¼ 0; ð6Þ

where the DeTurck vector is defined by ξa ¼
gcd½Γa

cdðgÞ − Γa
cdðḡÞ�. Here, Γa

cdðgÞ is the Christoffel

connection associated to a metric g, and ḡab is a reference
metric which we are free to choose. After adding on this
gauge fixing term, demanding our symmetry restrictions and
imposing appropriate boundary conditions, the Einstein-
DeTurck equation becomes a set of elliptic partial differential
equations.
Note, however, that in order for a solution to the

Einstein-DeTurck equation to also yield a solution to
Einstein’s equation, we need ξa ¼ 0 on solutions of (6).
A solution with nonzero ξa is called a Ricci soliton. It has
been shown in certain cases that Ricci solitons cannot exist
[16,33], however, our work does not satisfy the required
conditions to make this claim a priori. Instead, we simply
solve the Einstein-DeTurck equation and check afterwards
that the DeTurck vector is small and tending towards zero
in the continuum limit. Since the problem we are solving is
elliptic, we know that solutions with nonzero ξ cannot
be arbitrarily close to a solution of Einstein’s equation.
As such we use the norm ξ2 to monitor whether we are
approaching a true solution of the Einstein equation (1).
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In our case, we choose the reference metric to be defined
by the above ansatz with

Fiðx; y; uÞ ¼
8<
:

1 for 1 ≤ i ≤ 5

α
1þα2

for i ¼ 6

0 for 7 ≤ i ≤ 9:

ð7Þ

Boundary conditions: First, let us consider the fictitious
boundaries of our domain. These consist of the equatorial
plane at u ¼ 0, the north pole at u ¼ 1, the axis of
symmetry where the S2 shrinks to zero size at x ¼ 0 and
the bifurcating Killing horizon at y ¼ 0. The boundary
conditions at each of these fictitious boundaries, which can
be found in the Supplemental Material [29], are fixed by
requiring regularity.
At the y ¼ 1 boundary, we require that the metric

approaches the Poincaré horizon of AdS5. In order to
achieve this, we enforce that the metric is equal to the
reference metric at this boundary. Since A, P, S, and W are
all equal to one at y ¼ 1, note that this boundary condition
means the metric matches (4) as y → 1− after the identi-
fication, dφ ¼ dϕþ α=ð1þ α2Þdt.
Finally, we need to consider the boundary conditions on

the brane (located at x ¼ 1). In the RSII setup, the two sides
of the brane are identified under a Z2 symmetry. Since we
are interested in the case where the stress energy tensor on
the brane vanishes, the corresponding Israel junction
conditions [34] read

0 ¼ Kab − Kγab þ
3

l
γab; ð8Þ

where γab is the induced metric on the brane and Kab ¼
γac∇cnb is the extrinsic curvature, with nb being the inward
unit normal to the brane. These provide six boundary
conditions on the brane. We additionally impose that
ξx ¼ 0 and that F8 ¼ F9 ¼ 0 at x ¼ 1, making a total of
nine boundary conditions, imposed on the nine functions Fi.
Numerics: We approximate the PDEs by a set of non-

linear algebraic equations defined on a Gauss-Lobatto grid
using pseudospectral collocation methods. The resultant
algebraic equations are then solved using a standard
Newton-Raphson algorithm (see, for instance, Ref. [32]
for a comprehensive review of such methods).
Our ansatz depends on two parameters: α and β. The

parameter α controls the rotation of the black hole, with
α ¼ 1 being an extremal black hole and α ¼ 0 the static
braneworld black hole of Ref. [11]. The size of the black
hole relative to the AdS length scale l is in turn controlled
by β. More specifically, the temperature and angular
velocity of the braneworld black hole, measured with
respect to inertial coordinates at spatial infinity of the
braneworld, is given by T¼ð4πlβÞ−1ð1−α2Þ=ð1þα2Þ and
Ω ¼ αðlβÞ−1=ð1þ α2Þ, respectively. Note that the ratio
Ω=T is independent of β and l.

Results and discussion.—In Fig. 1 we plot the area of the
bifurcating Killing sphere of rotating RSII black holes for a
given value of α (or, equivalently, Ω=T) against the proper
radius, ρ (shown as the black dots in Fig. 1). To compute ρ,
we divide the proper distance around the equator of the
braneworld black hole by 2π.
For reference, we also plot the areas of asymptotically

flat five-dimensional single rotation Myers-Perry black
holes (dashed, light grey line) and four-dimensional Kerr
black holes (dotted, dark grey line) with the same Ω=T
and appropriately scaled by powers of l, so that we only
compare dimensionless quantities. For small black holes
the area exhibits five-dimensional behavior, while large
RSII black holes show four-dimensional behavior.
We also consider the induced geometry of the brane-

world bifurcating Killing surface, i.e., where x ¼ 1 and
y ¼ 0, at a constant time slice. This yields an axisymmetric
two-dimensional geometry, which is completely deter-
mined by the Ricci scalar as a function of the inclination
from the equatorial plane. In order to express the inclination
in a gauge independent way, we introduce the function ρðuÞ
which measures the proper radius of the circle in the two
dimensional geometry at fixed u, so that ρð1Þ ¼ 0 at the
north pole and ρðuÞ increases as u decreases. In Fig. 2 we
plot the Ricci scalar as a function of ρðuÞ over u ∈ ð0; 1Þ
for each of the braneworld black holes (solid, black lines)
for a fixed value of Ω=T, along with the corresponding
plot for the Kerr black hole (dashed, gray line). Here, and
for the remainder of the paper, we multiply the quantities of
both axes by the required factors of the temperature T to
make them dimensionless. As one moves from left to right

FIG. 1. The area of the bifurcating Killing surface of rotating
RSII black holes, with α ¼ 0.2, as a function of the proper radius
ρ (black dots) in a log-log plot. The darker, dotted line is the area
of a four-dimensional Kerr black hole, while the lighter, dashed
line is the area of a five-dimensional single rotating Myers Perry
black hole, both of which have the same Ω=T. We have divided
the quantities on both axes by powers of l to make them
dimensionless, for example on the y axis, we have AH=la where
a ¼ 3 for both the RSII black holes and the Myers-Perry black
holes, whereas a ¼ 2 for the Kerr black holes.
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between the different black curves in Fig. 2, α is fixed and β
is decreasing. The curves approach that of the Kerr black
hole as β becomes large, adding further evidence that the
induced geometry of large braneworld black holes is very
close to that of the Kerr geometry.
Another interesting quantity that allows for comparison

to Kerr is the position of the innermost stable equatorial
circular orbit (ISCO) around the black hole. We consider
the motion of a massive particle restricted to the inter-
section of the equatorial plane u ¼ 0 and the brane x ¼ 1.
Indeed, both of these planes are at the center of a Z2

symmetry in the bulk spacetime, so any geodesic starting
with motion in this region will remain within it. Moreover,
just like in Kerr, we have two conserved quantities
associated to the two Killing vector fields: the energy E
and the angular momentum h. As usual, the use of these
allows one to find an ordinary differential equation that
governs the radial profile of a normalized timelike geo-
desic, i.e., yðtÞ, which can be written as _yðtÞ2 ¼ Vðy;E; hÞ.
To find the ISCO, we require that V ¼ V 0 ¼ 0, where the

derivative is with respect to y. These two equations can be
solved to give a family of circular geodesics depending on
ðE; hÞ. From these, we pick the one with the minimal
angular momentum, which will be the ISCO (minimizing
with respect to energy gives very similar results). We
computed the proper radius ρISCO of the ISCO, which once
again is the proper distance around its circumference
divided by 2π, and multiplied by the temperature T to
get a dimensionless quantity. It should be noted that this
method requires some interpolation between our lattice
points, so will contain some noise.
In Fig. 3, we plot the value of ρISCOT against β−1 for

fixed α ¼ 0.5. We expect that in the large β limit, the

braneworld black hole tends towards a Kerr geometry, thus
we have added for reference the value for ρISCOT for a Kerr
black hole of the same angular velocity at β−1 ¼ 0. For
each value of α we have probed, we observed the same
qualitative behavior: ρISCOT tends towards that of the Kerr
black hole as β becomes large, and increases as β decreases.
Note that, five-dimensional black holes do not contain
bound orbits for timelike particles, and therefore, in agree-
ment with our data, one would expect the value of ρISCOT to
increase as β becomes very small, where our black holes
exhibit five-dimensional behavior.
We also determined the ergoregion of the RSII black

holes in the bulk and found in each case that the region
has spherical topology, as perhaps expected. It would be
interesting to investigate whether the slightly different
ergoregions for the black holes result in different super-
radiance instabilities [35,36].
To conclude, our results clearly show a transition from

five-dimensional to four-dimensional behavior as brane-
world black holes increase in size, and hence that rotating
braneworld black holes of finite size will differ from the
standard four-dimensional Kerr black holes of general
relativity. Our results discriminate in a quantitative manner
the aforementioned deviations. The work presented in this
Letter provides a stepping stone for imposing constraints
from both multimessenger astrophysics [37] and future
lepton colliders, such as the International Linear Collider
[26,27] and the Compact Linear Collider [28], to Randall-
Sundrum type scenarios. Natural follow-up work includes
calculating the quasi-normal mode spectrum of braneworld
black holes and studying their linear mode stability.
Perhaps more ambitiously, we would like to know whether
the braneworld black holes we have found can be formed
dynamically on the brane, following the seminal work of
Ref. [38]. Finally, it would be interesting to analyze the
extremal limit directly, and compare to the results reported

FIG. 2. The value of the Ricci scalar of the two-dimensional
induced geometry of the intersection of the event horizon with the
brane at constant time is plotted here for the braneworld black
holes (solid, black lines) and for a four-dimensional Kerr black
hole (dashed, gray line) at fixed angular velocity, α ¼ 0.6. The
braneworld curves closest to the Kerr line are those with largest β,
and β decreases monotonically as one moves between the curves
from left to right.

FIG. 3. The plot of the proper radius of the ISCO for brane-
world black holes with α ¼ 0.5 against β−1 (black dots). We have
added the corresponding value for the Kerr black hole with the
same angular velocity at β−1 ¼ 0 (gray triangle).
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in Ref. [39], which studied extremal charged black holes in
RSII braneworld scenarios.
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