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Deconfined quantum critical point (DQCP) characterizes a kind of exotic phase transition beyond the
usual Landau-Ginzburg-Wilson paradigm. Here we study the nonequilibrium imaginary-time dynamics of
the DQCP in the two-dimensional J-Q3 model. We explicitly show the deconfinement dynamic process
and identify that it is the spinon confinement length, rather than the usual correlation length, that increases
proportionally to the time. Moreover, we find that, in the relaxation process, the order parameters of the
Néel and the valence-bond-solid orders can be controlled by different length scales, although they satisfy
the same equilibrium scaling forms. A dual dynamic scaling theory is then proposed. Our findings not only
constitute a new realm of nonequilibrium criticality in DQCP, but also offer a controllable knob by which to
investigate the dynamics in strongly correlated systems. Possible realizations in foreseeable quantum
computers are also discussed.
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Introduction.—Fractionalization is one of the most
intriguing notions in particle physics and modern con-
densed matter physics [1–4]. A prominent example in
which fractionalized degrees of freedom play dominant
roles is the deconfined quantum critical point (DQCP).
The DQCP was proposed to describe the phase transition
between the Néel order and the spontaneously dimerized
valence-bond solid (VBS) in the two-dimensional (2D)
spin-1=2 Heisenberg model [5,6]. According to the tradi-
tional Landau-Ginzburg-Wilson (LGW) paradigm, this
phase transition should be first ordered. However, the
DQCP theory shows that the phase transition can be
continuous when the essential fluctuating modes near this
critical point are the deconfined spinons and the emergent
gauge fields, although the usual “intact” spin-wave and
triplet excitations govern the dynamics in the Néel and VBS
order, respectively [5,6]. Besides its conceptual importance,
the DQCP also provides profound insights in other strongly
correlated systems, such as high-temperature superconduc-
tivity [7–10], spin liquid [11–13], lattice gauge theory
[14–17], and so on. Accordingly, the DQCP has attracted
enormous attention from theoretical, numerical, and exper-
imental aspects [18–39].
The long-range fluctuations of the deconfined degrees of

freedom can induce striking equilibrium critical properties
near the DQCP. Besides the remarkably large anomalous
dimension [20,25], the DQCP possesses two relevant
length scales. In addition to the correlation length scale
ξ, an extra divergent length ξ0, which measures the spinon
confinement length or the thickness of the VBS domain
walls, develops near the DQCP [6,30]. They satisfy
ξ0 ∝ ξðν0=νÞ, with ν and ν0 being the corresponding critical

exponents [6,30]. It was plausibly shown that the interplay
between these two length scales may take responsibility for
some anomalous equilibrium scaling behaviors near the
DQCP [29,30].
On the other hand, understanding nonequilibrium

dynamics is one of the central subjects in diverse fields
such as cosmology, high-energy physics, and condensed
matter physics, spanning almost all time and length scales
[40,41]. Near a critical point, the nonequilibrium dynamics
has been raising intensive attention from both theoretical
[40,41] and experimental aspects [42–45]. However, the
nonequilibrium critical dynamics in the 2D DQCP has
rarely been studied.
As a routine method to find the ground state, the

imaginary-time evolution is now under extensive investi-
gation owing to its application in the experimental platforms
of quantum computers [46–49], which were shown to
provide a promising tool to study the nonequilibrium
properties ranging from high-energy physics to quantum
critical dynamics [50–55]. In addition, the imaginary-time
dynamics shares some universal properties with the real-
time dynamics and bears amenability to quantum
Monte Carlo (QMC) simulations without sign problem
[56–58]. Previous studies demonstrated that the imagi-
nary-time relaxation dynamics in the LGW quantum phase
transitions [59] exhibits scaling behaviors in analogy to the
classical short-time critical dynamics [60–62], providing
fruitful insights in quantum critical dynamics [59,63–66].
These motivate us to study the imaginary-time relaxation

dynamics of the DQCP. By large-scale QMC simulations
[58,67,68], we show that the DQCP exhibits a lot of exotic
nonequilibrium scaling behaviors induced by the intriguing
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interplay between the nonequilibrium dynamics, decon-
finement process, emergent symmetry, and the critical
scaling with the two length scales. In particular, we find
that it is the spinon confinement length ξ0, rather than the
conventional correlation length ξ, that scales with the
imaginary time τ as ξ0 ∝ τð1=zÞ with z ¼ 1 as the dynamic
exponent in DQCP, in sharp contrast to the usual LGW
critical dynamics in which ξ ∝ τð1=zÞ [59,63]. In addition,
we find the dynamics of the Néel order parameter and the
VBS order parameter can be controlled by different length
scales, although they share similar equilibrium finite-size
scaling. Moreover, a remarkable dual dynamic scaling is
then discovered, in which the scaling form of the Néel order
parameter and the VBS order parameter exchanges as the
initial state is changed to its dual counterpart. This dual
dynamic scaling can be regarded as the nonequilibrium
incarnation of the equilibrium emergent symmetry.
Model.—A prototypical model that exhibits the DQCP

is the J-Q3 model in the 2D square lattice [20]. The
Hamiltonian reads

H ¼ −J
X

hiji
Pij −Q

X

hijklmni
PijPklPmn; ð1Þ

in which J > 0 and Q > 0, hiji and hijklmni denote,
respectively, nearest neighbors and three nearest-neighbor
pairs in horizontal or vertical columns on the square lattice,
and Pij denotes the spin singlet operator defined as Pij ≡
1
4
− Si · Sj with S being the spin-1=2 operator. The system

favors the Néel (VBS) phase with a finite order parameter
M (D) when q≡ J=Q ≫ 1 (≪ 1) [20]. For the imaginary-
time relaxation dynamics, the evolution of the wave
function jψðτÞi obeys the imaginary-time Schrödinger
equation −ð∂=∂τÞjψðτÞi ¼ HjψðτÞi with an uncorrelated
initial state [59].
Relaxation dynamics of two length scales.—Given the

two relevant length scales in DQCP, one should at first
explore their dynamic scalings. Scaling analyses demon-
strate that there should be two possibilities: (i) ξ ∝ τð1=zÞ

and ξ0 ∝ τðν0=νzÞ; (ii) ξ0 ∝ τð1=zÞ, and ξ ∝ τðν=zν0Þ. In usual
LGW criticality, conventional wisdom tells us that
ξ ∝ τð1=zÞ [59,63,64], indicating that scenario (i) is right.
However, a prominent question is whether this scenario is
also selected by the DQCP.
To reveal the answer, we investigate the deconfinement

process from an initial state with a triplet embedded in the
VBS background at the critical point (determined in the
following). We find that the size of the spinon pair Λ,
defined via the strings connecting the unpaired spins in the
S ¼ 1 sector [30,69], increases with τ as Λ ∝ τ0.931 as
shown in Figs. 1(a) and 1(b). This exponent is close to 1,
demonstrating that ξ0 ∝ τð1=zÞ, since it was shown that
ξ0 ∝ Λ [30]. There follows ξ ∝ τð1=zuÞ with zu ≡ ðzν0=νÞ

(subscript u indicates the usual length scale). This demo-
nstrates that scenario (ii) is right.
General dynamic scaling form.—Generally, the imaginary-

time relaxation process near the DQCP should be controlled
by the dynamics of two relevant length scales ξ0 ∝ τð1=zÞ and
ξ ∝ τð1=zuÞ. For an operator Y, its dynamic scaling should
satisfy

Yðτ; δ; L; fXgÞ ¼ τ
s
z̃fðδτ 1

ν̃ z̃; τL−z; τL−zu ; fXτ−c
z̃gÞ; ð2Þ

in which s is the exponent related to Y, δ≡ q − qc with qc as
the critical point, L is the lattice size, and z̃ is the dynamic
exponent, which can be z or zu, or their combination,
depending on the dynamic process; similarly, ν̃ can be ν or
ν0, and fXg with its exponent c represents other possible
relevant variables associated with the initial state [70]. For
saturated ordered and completely disordered initial states, X
vanishes, since these states keep invariant under scale trans-
formation [59,60]. If zu ¼ z, Eq. (2) recovers the usual single-
length-scale relaxation scaling theory, in which, for instance,
a dimensionless variable at δ ¼ 0 is a function of τL−zu , and
the order parameter scales as M2 ¼ τ−ð2β=νzuÞfðτL−zuÞ for a
saturated initial state, and M2 ¼ L−dτðd=zuÞ−ð2β=νzuÞfðτL−zuÞ
for a disordered initial state [62]. These results are bench-
marked in the quantum Ising model [71,72] in the
Supplemental Material [73].
Relaxation dynamics with the VBS initial state.—We

then explore the dynamic scaling in model (1) from a
saturated VBS state. For a dimensionless quantity

(a)

(b)

FIG. 1. Dynamics of the confinement length scale. (a) Illustra-
tion of the fractionalization process of spinons. Shown is the
evolution of typical configurations for a sampled overlap
hψ leftjψ righti in S ¼ 1 sector with two spinon strings, which
are initially located in nearest-neighbor sites embedded in the
VBS background (not shown). (b) Curves of the size of spinon
pair Λ for various lattice sizes before (left) and after (right)
rescaling.
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IDðτ; δ; LÞ, defined as the average sign of the VBS order
parameter, ID ≡ hsgnfDðτÞgi, we find in Fig. 2(a) that for a
fixed τL−z the convergence of crossing points of IDðτ; δ; LÞ
for large L corroborates the value of the critical point
qc ≃ 0.671ð2Þ [24], which indicates that τL−z dominates
the dynamics of ID, rather than τL−zu . This makes the
scaling form of ID remarkably different from the usual one,
since the relevant length scale is not the conventional ξ but
the spinon confinement length ξ0.
In equilibrium, both M2 and D2 are proportional to

L−ð2β=νÞ with ð2β=νÞ ≃ 1.228 [24,27,37]. Strikingly, here
we find that their relaxation dynamics from a saturated
VBS initial state are controlled by different length scales.
ForD2, Fig. 2(b) shows that in the short-time stage it obeys
D2ðτ; LÞ ¼ τ−0.881, suggesting the exponent is ð2β=νzuÞ
with zu ≃ 1.394. Accordingly, ν=ν0 ≃ 0.717, close to the
known results [30,74]. The short- and long-time scaling
behaviors require that the scaling form of D2 satisfies
D2ðτ; LÞ ¼ τ−ð2β=νzuÞfðτL−zuÞ, for which the usual corre-
lation length ξ ∝ τð1=zuÞ dominates. Otherwise, if ξ0 domi-
nates, the appearance of τL−z in the scaling function f
will make the scaling form hard to satisfy these two
limits simultaneously within a simple form. The above
scaling form is confirmed by the rescaling collapse in
Fig. 2(b) [75].
Contrarily, for M2, Fig. 2(c) shows that its short-time

dynamics obeys M2 ∝ L−dτ0.743 [73]. This exponent is
close to ½ðd=zÞ − ð2β=νzÞ�. Accordingly, the short- and
long-time scaling behaviors require the full scaling form of
M2 to be M2ðτ; LÞ ¼ L−dτðd=zÞ−ð2β=νzÞfðτL−zÞ, where ξ0
and τL−z dominate. This scaling form is confirmed by the

scaling collapse in Fig. 2(c). Thus, D2 and M2 select
different dominant length scales separately. A possible
reason for the discrepancy is that D2 is deeply affected by
the memory from the initial VBS state and thus the local
fluctuations dominate in the short-time stage; whereas with
this initial state M2 feels a disorder environment and its
value comes from the global fluctuations, for which the
contributions of VBS domain walls govern the dynamic
scaling behaviors [73].
More interestingly, some quantities can even show

fascinating relaxation behaviors controlled by the dynamics
of ξ and ξ0 simultaneously. For instance, in equilibrium,
the VBS domain wall energy density κ is found to scale
as κ ∝ ξ0−1ξ−ðdþz−2Þ (dþ z − 2 ¼ 1) [5,30]. Here we gen-
eralized this scaling into the nonequilibrium case. As
shown in Fig. 2(d), κ relaxes according to κðτ; LÞ ¼
τ−ð1=zÞτ−ð1=zuÞfðτL−zÞ from the saturated VBS state at
q ¼ qc. In the short-time stage, κ ∝ τ−ð1=zÞτ−ð1=zuÞ, while
in the long-time stage, κ crosses over to κ ∼ L−½1þðν=ν0Þ� as
fðτL−zÞ ∼ ðτL−zÞð1=zuÞþð1=zÞ for τ → ∞, recovering its equi-
librium finite-size scaling [6,30,73,74].
Relaxation dynamics with the Néel initial state.—To

illustrate the role played by the initial state in the relaxation
dynamics, we now study the dynamic scaling with the
saturated antiferromagnetic initial state. From Fig. 3(a), we
find that the average sign of the Néel order parameter
defined as IM ≡ hsgnfMðτÞgi obeys IM ¼ fðτL−zÞ similar
to ID. The critical point estimated by crossing-point
analyses of IM is 0.671(2), consistent with that given
by ID. Notably, we find that M2 and D2 exchange their
scaling forms compared with the VBS initial state case.

(a)

(c) (d)

(b)

FIG. 2. Relaxation dynamics with the VBS initial state. (a) Determination of the critical point via the average sign of the VBS order
parameter ID. (b) Curves of the squared VBS order parameter for various lattice sizes before (left) and after (right) rescaling. (c) Curves
of the squared Néel order parameter for various lattice sizes before (left) and after (right) rescaling. (d) Curves of the density of domain
wall energy κ for various lattice sizes before (left) and after (right) rescaling.
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Namely, M2 satisfies M2ðτ; LÞ ¼ τ−ð2β=νzuÞfðτL−zuÞ gov-
erned by ξ, since in the short-time stage its dominant
component Mz decays as M2

z ∝ τ−0.863 with the exponent
close to ð2β=νzuÞ, as shown in Fig. 3(b). Contrarily, D2

satisfies D2ðτ; LÞ ¼ L−dτðd=zÞ−ð2β=νzÞfðτL−zÞ, governed by
ξ0, since D2 changes as D2 ∝ L−dτ0.689 with the exponent
close to ðd=zÞ − ð2β=νzÞ, as shown in Fig. 3(c). Moreover,
the full scaling forms for M2 and D2 are also verified in
Figs. 3(b) and 3(c) by rescaling collapse. Again,M2 andD2

are governed by different length scales.
In addition, we find in Fig. 3(d) that the dynamics of the

susceptibility χ at the momentum ½ð2π=LÞ; 0� [30] satisfies
χðτ; LÞ ¼ L−ðd−zÞfðτL−zÞ (here d − z ¼ 1). An interesting
phenomenon is that in the short-time stage χðτ; LÞ∼
L−1ðτL−zÞðν=ν0zÞ, indicating a hidden interplay between
the dynamics of two length scales (see Supplemental
Material for further discussions [73]).
Dual dynamic scaling.—The exchange of scaling forms

for M2 and D2 demonstrates a remarkable dual dynamic
scaling behavior. This dual dynamic scaling property can
be regarded as the dynamic incarnation of the equilibrium
emergent symmetry, which, for model (1), is an emergent
SO(5) symmetry by the rotation between the Néel order and
the VBS order [19,37]. The emergence of the dual dynamic
scaling is quite intriguing. As demonstrated in the usual
two-length scale theory, the dangerously irrelevant variable
and the corresponding additional length scale only manifest
themselves in one side of the transition point [76–79]. In
the DQCP of model (1), it was regarded that the discrete Z4

symmetry breaking in the VBS phase takes responsibility

for the additional length scale [30,37]. Therefore, asym-
metric dynamic behaviors can be expected for different
initial conditions. However, here we find that M2ðD2Þ for
the saturated antiferromagnet initial state shares the same
scaling form with D2ðM2Þ for the saturated VBS initial
state. This demonstrates that the scaling with two length
scales even extends to low excited states in both sides of
the DQCP.
The dual dynamic scaling also manifests itself when the

initial state is a disordered state.We find in the Supplemental
Material [73] that M2 and D2 evolve according to the same
scaling form P2ðτ; LÞ ¼ L−dτðd=zÞ−ð2β=νzÞfðτL−zÞ in which
P represents M or D and ξ0 dominates their relaxation
dynamics.
Discussion.—Our findings can be detected in the exper-

imental platforms of quantum computers in the foreseeable
future. Recently, realizing various “experiments” in quan-
tum computers has become a new vivifying realm ranging
from high-energy physics [50] to condensed matter physics
[51–55], boosted by the claimed quantum advantage
[80–82]. In particular, nonequilibrium quantum critical
dynamics has been observed in the noisy intermediate-
scale quantum device [52]. Moreover, imaginary-time
relaxation has been employed in various quantum computa-
tional devices in the search of ground states [46–48]. It is
promising that the imaginary-time relaxation dynamics we
revealed can be detected directly in these devices. Besides,
since directly simulating the real-time dynamics in 2D is
confronting huge challenges, our work also provides
significant instructions to the real-time relaxation dynamics

(a) (b)

(d)(c)

FIG. 3. Relaxation dynamics with the saturated Néel initial state. (a) The average sign of the Néel order parameter IM is used to
estimate the critical point. For different L and fixed τL−1 ¼ 1=4, crossing points (left) of curves of IM − q are extrapolated to estimate
the critical point as qc ≃ 0.671ð2Þ (right), corroborating that from ID shown in Fig. 2. (b) Curves of the squared VBS order parameter for
various lattice sizes before (left) and after (right) rescaling. (c) Curves of the squared Néel order parameter for various lattice sizes before
(left) and after (right) rescaling. (d) Curves of the susceptibility for various lattice sizes before (left) and after (right) rescaling.
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of the DQCP by realizing that the short-time scaling also
manifests itself in real-time dynamics in various quantum
systems [83–88].
Summary.—In summary, we have studied the imaginary-

time nonequilibrium dynamics in 2D DQCP and found that
the interplay between the deconfinement process and the
fluctuating modes with two length scales can contribute
striking nonequilibrium properties. We have identified that
in the relaxation process the confinement length ξ0
increases proportionally to τ, contrary to the usual case
in which ξ increases proportionally to τ. In addition, we
have discovered that the Néel and VBS order parameters
can be controlled by different length scales, depending on
the initial states, although these two order parameters obey
the similar equilibrium finite-size scaling. An exotic dual
dynamic scaling is then discovered, which can be regarded
as the dynamic incarnation of the equilibrium emergent
symmetry. In this dual dynamic scaling, the scaling form of
the Néel order parameter and the VBS order parameter
exchanges as the initial state is changed to its dual
counterpart. Our work pioneers the studies on the non-
equilibrium dynamics in 2D DQCP and provides new
ingredients in investigations on the DQCP. Possible real-
izations in near-term quantum computers have also been
discussed.
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Destruction of Néel order in the cuprates by electron doping,
Phys. Rev. B 78, 045110 (2008).

[9] R. K. Kaul and S. Sachdev, Quantum criticality of U(1)
gauge theories with fermionic and bosonic matter in two
spatial dimensions, Phys. Rev. B 77, 155105 (2008).

[10] Y.-H. Zhang and S. Sachdev, Deconfined criticality and
ghost Fermi surfaces at the onset of antiferromagnetism in a
metal, Phys. Rev. B 102, 155124 (2020).

[11] Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid
states, Rev. Mod. Phys. 89, 025003 (2017).

[12] L. Savary and L. Balents, Quantum spin liquids: A review,
Rep. Prog. Phys. 80, 016502 (2017).

[13] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R.
Norman, and T. Senthil, Quantum spin liquids, Science 367,
eaay0668 (2020).

[14] L. Janssen and Y.-C. He, Critical behavior of the QED3-
Gross-Neveu model: Duality and deconfined criticality,
Phys. Rev. B 96, 205113 (2017).

[15] X. Y. Xu, Y. Qi, L. Zhang, F. F. Assaad, C. Xu, and Z. Y.
Meng, Monte Carlo Study of Lattice Compact Quantum
Electrodynamics with Fermionic Matter: The Parent State of
Quantum Phases, Phys. Rev. X 9, 021022 (2019).

[16] Y. Q. Qin, Y.-Y. He, Y.-Z. You, Z.-Y. Lu, A. Sen, A. W.
Sandvik, C. Xu, and Z. Y. Meng, Duality between the
Deconfined Quantum-Critical Point and the Bosonic
Topological Transition, Phys. Rev. X 7, 031052 (2017).

[17] L. Janssen, W. Wang, M. M. Scherer, Z. Y. Meng, and X. Y.
Xu, Confinement transition in the QED3-Gross-Neveu-XY
universality class, Phys. Rev. B 101, 235118 (2020).

[18] M. Levin and T. Senthil, Deconfined quantum criticality and
Néel order via dimer disorder, Phys. Rev. B 70, 220403(R)
(2004).

[19] T. Senthil and M. P. A. Fisher, Competing orders, nonlinear
sigma models, and topological terms in quantum magnets,
Phys. Rev. B 74, 064405 (2006).

[20] A.W. Sandvik, Evidence for Deconfined Quantum
Criticality in a Two-Dimensional Heisenberg Model with
Four-Spin Interactions, Phys. Rev. Lett. 98, 227202 (2007).

[21] R. G. Melko and R. K. Kaul, Scaling in the Fan of an
Unconventional Quantum Critical Point, Phys. Rev. Lett.
100, 017203 (2008).

[22] F.-J. Jiang, M. Nyfeler, S. Chandrasekharan, and U.-J.
Wiese, From an antiferromagnet to a valence bond solid:
Evidence for a first-order phase transition, J. Stat. Mech.
(2008) P02009.

[23] A. B. Kuklov, M. Matsumoto, N. V. Prokof’ev, B. V.
Svistunov, and M. Troyer, Deconfined Criticality: Generic
First-Order Transition in the SU(2) Symmetry Case, Phys.
Rev. Lett. 101, 050405 (2008).

[24] J. Lou, A. W. Sandvik, and N. Kawashima, Antiferromag-
netic to valence-bond-solid transitions in two-dimensional
SUðNÞ Heisenberg models with multispin interactions,
Phys. Rev. B 80, 180414(R) (2009).

[25] A.W. Sandvik, Continuous Quantum Phase Transition
between an Antiferromagnet and a Valence-Bond Solid in

PHYSICAL REVIEW LETTERS 128, 020601 (2022)

020601-5

https://doi.org/10.1038/nphys894
https://doi.org/10.1038/nphys894
https://doi.org/10.1126/science.1091806
https://doi.org/10.1126/science.1091806
https://doi.org/10.1103/PhysRevB.70.144407
https://doi.org/10.1103/PhysRevB.70.144407
https://doi.org/10.1103/PhysRevB.75.235122
https://doi.org/10.1103/PhysRevB.75.235122
https://doi.org/10.1103/PhysRevB.78.045110
https://doi.org/10.1103/PhysRevB.77.155105
https://doi.org/10.1103/PhysRevB.102.155124
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1103/PhysRevB.96.205113
https://doi.org/10.1103/PhysRevX.9.021022
https://doi.org/10.1103/PhysRevX.7.031052
https://doi.org/10.1103/PhysRevB.101.235118
https://doi.org/10.1103/PhysRevB.70.220403
https://doi.org/10.1103/PhysRevB.70.220403
https://doi.org/10.1103/PhysRevB.74.064405
https://doi.org/10.1103/PhysRevLett.98.227202
https://doi.org/10.1103/PhysRevLett.100.017203
https://doi.org/10.1103/PhysRevLett.100.017203
https://doi.org/10.1088/1742-5468/2008/02/p02009
https://doi.org/10.1088/1742-5468/2008/02/p02009
https://doi.org/10.1103/PhysRevLett.101.050405
https://doi.org/10.1103/PhysRevLett.101.050405
https://doi.org/10.1103/PhysRevB.80.180414


Two Dimensions: Evidence for Logarithmic Corrections to
Scaling, Phys. Rev. Lett. 104, 177201 (2010).

[26] K. Chen, Y. Huang, Y. Deng, A. B. Kuklov, N. V. Prokof’ev,
and B. V. Svistunov, Deconfined Criticality Flow in the
Heisenberg Model with Ring-Exchange Interactions, Phys.
Rev. Lett. 110, 185701 (2013).

[27] K. Harada, T. Suzuki, T. Okubo, H. Matsuo, J. Lou, H.
Watanabe, S. Todo, and N. Kawashima, Possibility of
deconfined criticality in SUðNÞ Heisenberg models at small
N, Phys. Rev. B 88, 220408(R) (2013).

[28] S. Pujari, K. Damle, and F. Alet, Néel-State to Valence-
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Bond-Solid Transition, Phys. Rev. Lett. 115, 267203
(2015).

[38] Y.-C. Wang, N. Ma, M. Cheng, and Z. Y. Meng, Scaling of
disorder operator at deconfined quantum criticality, arXiv:
2106.01380.

[39] J. Zhao, Y.-C. Wang, M. Cheng, and Z. Y. Meng, Scaling of
Entanglement Entropy at Deconfined Quantum Criticality,
Phys. Rev. Lett. 128, 010601 (2022).

[40] J. Dziarmaga, Dynamics of a quantum phase transition
and relaxation to a steady state, Adv. Phys. 59, 1063
(2010).

[41] A. Polkovnikov, K. Sengupta, A. Silva, and M.
Vengalattore, Colloquium: Nonequilibrium dynamics of
closed interacting quantum systems, Rev. Mod. Phys. 83,
863 (2011).

[42] A. Keesling et al., Quantum Kibble-Zurek mechanism and
critical dynamics on a programmable Rydberg simulator,
Nature (London) 568, 207 (2019).

[43] J. A. P. Glidden, C. Eigen, L. H. Dogra, T. A. Hilker, R. P.
Smith, and Z. Hadzibabic, Bidirectional dynamic scaling in
an isolated Bose gas far from equilibrium, Nat. Phys. 17,
457 (2021).

[44] B. Ko, J. W. Park, and Y. Shin, Kibble-Zurek universality in
a strongly interacting Fermi superfluid, Nat. Phys. 15, 1227
(2019).

[45] C.-R. Yi, S. Liu, R.-H. Jiao, J.-Y. Zhang, Y.-S. Zhang, and S.
Chen, Exploring Inhomogeneous Kibble-Zurek Mechanism
in a Spin-Orbit Coupled Bose-Einstein Condensate, Phys.
Rev. Lett. 125, 260603 (2020).

[46] M. Motta, C. Sun, A. T. K. Tan, M. J. ORourke, E. Ye, A. J.
Minnich, F. G. S. L. Brandão, and G. K.-L. Chan, Determin-
ing eigenstates and thermal states on a quantum computer
using quantum imaginary time evolution, Nat. Phys. 16, 205
(2020).

[47] H. Nishi, T. Kosugi, and Y.-i. Matsushita, Implementation of
quantum imaginary-time evolution method on NISQ devi-
ces by introducing nonlocal approximation, npj Quantum
Inf. 7, 85 (2021).

[48] M. Huo and Y. Li, Shallow Trotter circuits fulfil error-
resilient quantum simulation of imaginary time, arXiv:
2109.07807; with IBM quantum experience website, https://
quantum-computing.ibm.com/ (2021).

[49] X. Y. Pei Zeng and Jinzhao Sun, Universal quantum
algorithmic cooling on a quantum computer, arXiv:2109
.15304.

[50] E. A. Martinez, C. A. Muschik, P. Schindler, D. Nigg, A.
Erhard, M. Heyl, P. Hauke, M. Dalmonte, T. Monz, P.
Zoller, and R. Blatt, Real-time dynamics of lattice gauge
theories with a few-qubit quantum computer, Nature
(London) 534, 516 (2016).

[51] P. Weinberg, M. Tylutki, J. M. Rönkkö, J. Westerholm, J. A.
Åström, P. Manninen, P. Törmä, and A.W. Sandvik, Scaling
and Diabatic Effects in Quantum Annealing with a D-Wave
Device, Phys. Rev. Lett. 124, 090502 (2020).

[52] M. Dupont and J. E. Moore, Quantum criticality using a
superconducting quantum processor, arXiv:2109.10909.

[53] A. A. Zhukov, S. V. Remizov, W. V. Pogosov, and Y. E.
Lozovik, Algorithmic simulation of far-from-equilibrium
dynamics using quantum computer, Quantum Inf. Process.
17, 223 (2018).

[54] H. Lamm and S. Lawrence, Simulation of Nonequilibrium
Dynamics on a Quantum Computer, Phys. Rev. Lett. 121,
170501 (2018).

[55] A. Chiesa, F. Tacchino, M. Grossi, P. Santini, I. Tavernelli,
D. Gerace, and S. Carretta, Quantum hardware simulating
four-dimensional inelastic neutron scattering, Nat. Phys. 15,
455 (2019).

[56] C. De Grandi, A. Polkovnikov, and A.W. Sandvik,
Universal nonequilibrium quantum dynamics in imaginary
time, Phys. Rev. B 84, 224303 (2011).

[57] C. D. Grandi, A. Polkovnikov, and A.W. Sandvik,
Microscopic theory of non-adiabatic response in real and
imaginary time, J. Phys. Condens. Matter 25, 404216
(2013).

[58] C.-W. Liu, A. Polkovnikov, and A.W. Sandvik, Quasi-
adiabatic quantum Monte Carlo algorithm for quantum
evolution in imaginary time, Phys. Rev. B 87, 174302
(2013).

PHYSICAL REVIEW LETTERS 128, 020601 (2022)

020601-6

https://doi.org/10.1103/PhysRevLett.104.177201
https://doi.org/10.1103/PhysRevLett.110.185701
https://doi.org/10.1103/PhysRevLett.110.185701
https://doi.org/10.1103/PhysRevB.88.220408
https://doi.org/10.1103/PhysRevLett.111.087203
https://doi.org/10.1103/PhysRevLett.111.087203
https://doi.org/10.1103/PhysRevX.5.041048
https://doi.org/10.1103/PhysRevX.5.041048
https://doi.org/10.1126/science.aad5007
https://doi.org/10.1038/nphys4190
https://doi.org/10.1038/nphys4190
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1103/PhysRevB.100.134507
https://doi.org/10.1103/PhysRevB.100.134507
https://doi.org/10.1103/PhysRevLett.122.175701
https://doi.org/10.1103/PhysRevLett.122.175701
https://doi.org/10.1038/s41467-019-10372-0
https://arXiv.org/abs/1904.10975
https://doi.org/10.1103/PhysRevLett.115.267203
https://doi.org/10.1103/PhysRevLett.115.267203
https://arXiv.org/abs/2106.01380
https://arXiv.org/abs/2106.01380
https://doi.org/10.1103/PhysRevLett.128.010601
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1038/s41586-019-1070-1
https://doi.org/10.1038/s41567-020-01114-x
https://doi.org/10.1038/s41567-020-01114-x
https://doi.org/10.1038/s41567-019-0650-1
https://doi.org/10.1038/s41567-019-0650-1
https://doi.org/10.1103/PhysRevLett.125.260603
https://doi.org/10.1103/PhysRevLett.125.260603
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1038/s41534-021-00409-y
https://doi.org/10.1038/s41534-021-00409-y
https://arXiv.org/abs/2109.07807
https://arXiv.org/abs/2109.07807
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://arXiv.org/abs/2109.15304
https://arXiv.org/abs/2109.15304
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1103/PhysRevLett.124.090502
https://arXiv.org/abs/2109.10909
https://doi.org/10.1007/s11128-018-2002-y
https://doi.org/10.1007/s11128-018-2002-y
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1038/s41567-019-0437-4
https://doi.org/10.1038/s41567-019-0437-4
https://doi.org/10.1103/PhysRevB.84.224303
https://doi.org/10.1088/0953-8984/25/40/404216
https://doi.org/10.1088/0953-8984/25/40/404216
https://doi.org/10.1103/PhysRevB.87.174302
https://doi.org/10.1103/PhysRevB.87.174302


[59] S. Yin, P. Mai, and F. Zhong, Universal short-time quantum
critical dynamics in imaginary time, Phys. Rev. B 89,
144115 (2014).

[60] H. K. Janssen, B. Schaub, and B. Schmittmann, New
universal short-time scaling behaviour of critical relaxation
processes, Z. Phys. B 73, 539 (1989).

[61] Z. B. Li, L. Schülke, and B. Zheng, Dynamic Monte Carlo
Measurement of Critical Exponents, Phys. Rev. Lett. 74,
3396 (1995).

[62] E. V. Albano, M. A. Bab, G. Baglietto, R. A. Borzi, T. S.
Grigera, E. S. Loscar, D. E. Rodriguez, M. L. R. Puzzo, and
G. P. Saracco, Study of phase transitions from short-time non-
equilibrium behaviour, Rep. Prog. Phys. 74, 026501 (2011).

[63] S. Zhang, S. Yin, and F. Zhong, Generalized dynamic
scaling for quantum critical relaxation in imaginary time,
Phys. Rev. E 90, 042104 (2014).

[64] Y.-R. Shu, S. Yin, and D.-X. Yao, Universal short-time
quantum critical dynamics of finite-size systems, Phys. Rev.
B 96, 094304 (2017).

[65] Y.-R. Shu and S. Yin, Short-imaginary-time quantum
critical dynamics in the J-Q3 spin chain, Phys. Rev. B
102, 104425 (2020).

[66] P. Weinberg and A.W. Sandvik, Dynamic scaling of the
restoration of rotational symmetry in Heisenberg quantum
antiferromagnets, Phys. Rev. B 96, 054442 (2017).

[67] A.W. Sandvik, Computational studies of quantum spin
systems, AIP Conf. Proc. 1297, 135 (2010).

[68] E. Farhi, D. Gosset, I. Hen, A. W. Sandvik, P. Shor, A. P.
Young, and F. Zamponi, Performance of the quantum
adiabatic algorithm on random instances of two optimiza-
tion problems on regular hypergraphs, Phys. Rev. A 86,
052334 (2012).

[69] Y. Tang and A.W. Sandvik, Confinement and Deconfine-
ment of Spinons in Two Dimensions, Phys. Rev. Lett. 110,
217213 (2013).

[70] B. Zheng, Generalized Dynamic Scaling for Critical Relax-
ations, Phys. Rev. Lett. 77, 679 (1996).
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