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Verifying the correct functioning of quantum gates is a crucial step toward reliable quantum information
processing, but it becomes an overwhelming challenge as the system size grows due to the dimensionality
curse. Recent theoretical breakthroughs show that it is possible to verify various important quantum gates
with the optimal sample complexity of Oð1=ϵÞ using local operations only, where ϵ is the estimation
precision. In this Letter, we propose a variant of quantum gate verification (QGV) that is robust to practical
gate imperfections and experimentally realize efficient QGVon a 2-qubit controlled-not gate and a 3-qubit
Toffoli gate using only local state preparations and measurements. The experimental results show that, by
using only 1600 and 2600 measurements on average, we can verify with 95% confidence level that the
implemented controlled-not gate and Toffoli gate have fidelities of at least 99% and 97%, respectively.
Demonstrating the superior low sample complexity and experimental feasibility of QGV, our work
promises a solution to the dimensionality curse in verifying large quantum devices in the quantum era.
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Introduction.—Quantum computers can perform compu-
tational tasks muchmore efficiently [1,2] and even exponen-
tially faster than their classical counterparts [3–5]. Before
harnessing the power of a quantumcomputer, a crucial step is
to verify the correct functioning of its building blocks, i.e.,
the quantumgates. Traditional quantumprocess tomography
(QPT) [6,7] can provide the complete information of a
quantum gate and is a feasible solution for small systems.
However, QPT is not scalable, as its complexity grows
exponentially with the size of the quantum system, and so far
has been applied to quantum gates acting on no more than
three qubits [8–10]. This exponential resource cost cannot be
circumvented in general, even if one can take advantage of
the sparsity of the underlying structures [11–13] or heuristic
algorithms [14,15].
The key observation toward efficient verification of a

quantum gate is that the complete information of a quantum
gate is usually not necessary in many tasks. Quite often, the
fidelity of a quantum gate is enough to characterize its
quality. Fidelity estimation based on unitary 2-designs and
the twirling protocol [16,17] can estimate the fidelity of a
Clifford gate with size-independent sample complexity of
Oð1=ϵ2Þ, where ϵ is the estimation precision. Direct fidelity
estimation andMonte Carlo sampling [18–20] can achieve a

similar sample complexity for Clifford and other well-
conditioned gates even if one can only prepare product
states and perform Pauli measurements. Randomized bench-
marking (RB) [21–24] can certify Clifford gates and some
special non-Clifford gates with a similar sample complexity
and possesses the additional advantage of robustness against
state-preparation and measurement errors.
Despite the progressmentioned above,most approaches in

the literature have disadvantages, which limit their appli-
cability. Notably, most approaches are limited to a few types
of quantum gates (say, Clifford gates) [16–21]. In addition,
they have a suboptimal scaling behavior in the precision ϵ.
Moreover, many approaches, including twirling protocols
and RB, require entangling operations [16,17,21–24], that
is, preparing entangled states or performing entangling
measurements.
Recently, an alternative approach called quantum gate

verification (QGV) or quantum process verification [25–27]
has been developed to tackle these problems. It is inspired by
probabilistic verification protocols that have found fruitful
applications in certifying quantum states [28–32] and entan-
glement [33,34]. With this approach, a variety of quantum
gates can be verified efficiently with the optimal sample
complexity ofOð1=ϵÞ using only local state preparations and
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measurements. Nevertheless, the current formulation of
QGV can reach a valid conclusion only when the gate to
be verified passes all the tests, whichmay prevent QGV from
obtaining a valid conclusion when a realistic quantum gate
with acceptable infidelity is considered.
In this Letter, we propose a variant of QGV that is

tolerant to gate imperfections, while keeping its efficiency.
With this robust proposal, we experimentally apply QGV to
a 2-qubit controlled-not (CNOT) gate realized in a photonic
system. By using 20 experimental settings and 1600
samples on average, we can verify that the CNOT gate
has at least 99% fidelity with a 95% confidence level. We
then apply QGV to a 3-qubit Toffoli gate to illustrate the
scalability and superiority of QGV. By using 32 measure-
ment settings and 2600 samples on average, we can verify
that the fidelity of the Toffoli gate is at least 97% with a
95% confidence level. By contrast, the standard QPTwould
require at least 4096 measurement settings and over a
million measurements in total to characterize the Toffoli
gate. Our experiments demonstrate that efficient verifica-
tion of quantum gates can be achieved with only local state
preparations and measurements.
Theoretical framework.—Consider a quantum device

that is expected to implement a target unitary transforma-
tion U, but actually realizes N unknown quantum channels
Λ1;…;ΛN , which are assumed to be identical and inde-
pendent, over the N runs. In practice, these channels might
deviate from U. Let 1 − ϵA be the average gate fidelity of
the channels with respect to U. Our goal is to verify, with
some confidence level 1 − δ (significance level δ), that the
average gate infidelity of the channels is not larger than a
given threshold ϵ, i.e.,

ϵA ≤ ϵ; with confidence level 1 − δ: ð1Þ

The verification procedure, illustrated in Fig. 1, can be
described as follows [26]. In the ith run, the verifier first
randomly chooses a pure state ρj ¼ jψ jihψ jj with proba-
bility pj from a set of test states fρjgj and subjects it to the
device. Then the verifier performs a two-outcome meas-

urement fMðjÞ
l ; 1 −MðjÞ

l g, which is called a test, on the
output state ΛiðρjÞ with outcome 1 for passing and 0 for

failure. Here the test operator MðjÞ
l needs to satisfy the

condition Tr½MðjÞ
l UðρjÞ� ¼ 1 and is chosen randomly with

the conditional probability pljj from a test set fMðjÞ
l gl that

depends on UðρjÞ. The verifier records the test results of the
N runs and compares the passing rate p̂s with a given
threshold pA, based on which the device is accepted or
rejected.
The performance of the above verification procedure is

mainly determined by the “process verification operator”
defined as [26]

Θ ≔ d
X

j

pjU−1
�X

l

pljjM
ðjÞ
l

�
⊗ ρ�j : ð2Þ

For a perfect device, the passing probability ps is unity. If
the quantum gate realized has (average gate) infidelity ϵ, by
contrast, the acceptance probability is upper bounded by
½pAðΘ; ϵÞ�N , where pAðΘ; ϵÞ is defined as the maximal
passing probability for quantum gates with infidelity ϵA ≥ ϵ
given the verification operator Θ [26]. If we set pA ¼ 1,
then the minimal number of tests required to verify the
quantum gate with infidelity ϵ and confidence level 1 − δ
reads

Nðϵ; δ;ΘÞ ¼ ⌈ ln δ
lnpAðΘ; ϵÞ⌉: ð3Þ

This number is minimized when the test states ρj form a
2-design [35,36] and the test operator for each test state ρj is
chosen to be the projector UðρjÞ onto the target output state,
in which case pAðΘ; ϵÞ ¼ 1 − ϵ, and Eq. (3) reduces to [26]

Noptðϵ; δÞ ¼ ⌈ ln δ
lnð1 − ϵÞ⌉ ≈

ϵ→0 ln δ−1

ϵ
: ð4Þ

In general, to realize the optimal verification protocol
mentioned above would require entangling operations,
which are often inaccessible. Fortunately, for many impor-
tant quantum gates, nearly optimal performance can be
achieved using local state preparations and local projective
measurements only [25–27]. For simplicity, in this Letter
we focus on verification protocols that are balanced, which
means the set of test states satisfies the condition

FIG. 1. Procedure for verifying the quantum device D. In each
run, the random number generator generates random numbers j
and l according to the probabilities pj and pljj (conditioned on j),
respectively. Then state ρj is drawn from the set of test states and
sent to D; next, the measurement module implements a two-

outcome measurement fMðjÞ
l ; 1 −MðjÞ

l g on the output state
ΛðρjÞ. By repeating the above procedure N times, the verifier
can reach a conclusion on the quality of D based on the passing
rate p̂s over the N tests.
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P
j pjρj ¼ 1=d, where d is the dimension of the under-

lying Hilbert space. Denote by ν ≔ νðΘÞ the spectral gap of
Θ (between the largest and the second largest eigenvalues),
then we have

Nlocalðϵ; δ;ΘÞ ≤ ⌈ ln δ
lnð1 − νϵÞ ⌉ ≤ ⌈ ln δ−1νϵ ⌉: ð5Þ

In practice, quantum gates are never perfect. Even if they
satisfy the condition ϵA ≤ ϵ, a few failure events might
happen with a non-negligible probability among the N tests.
In this case, setting pA ¼ 1 for the threshold would reject a
properly functioning device with certain probability. To
remedy this problem and construct a robust verification
protocol, we need to consider the situation with 0 < ϵA ≤ ϵ.
To be concrete, if the passing rate p̂s over theN tests is larger
than pAðΘ; ϵÞ, then the significance level δðp̂sÞ that the
device satisfies ϵA ≤ ϵ is upper bounded by

δðp̂sÞ ≤ e−Dðp̂skpAðΘ;ϵÞÞN; ð6Þ

whereDðxkyÞ ¼ x lnðx=yÞ þ ð1 − xÞ ln½ð1 − xÞ=ð1 − yÞ� is
the Kullback-Leibler divergence. On the other hand, given a
significance level δ, we can derive from Eq. (6) an upper
bound for the infidelity ϵA, that is,

ϵA ≤
d

dþ 1

1 −Dð−1Þ(p̂s; ðln δ−1Þ=N)

νðΘÞ ; ð7Þ

where Dð−1Þðp̂s; yÞ is the inverse function of y ¼ Dðp̂skxÞ
with domain 0 ≤ x < p̂s (for a fixed p̂s). The detailed

derivations of Eqs. (6) and (7) are relegated to Sec. S1 in
the Supplemental Material [37].
Experimental setup.—The experimental setups for veri-

fying 2- and 3-qubit quantum gates are shown in Fig. 2.
Both of them consist of three modules: a state-preparation
module, a quantum gate module, and a measurement
module. Here we use the path and polarization degrees
of freedom (d.o.f.) of the heralded photon to encode the test
state employed in the verification protocol. The 2-qubit
system consists of a path d.o.f. with up and down modes
and a polarization d.o.f. with horizontal (H) and vertical
(V) polarizations; by contrast, the 3-qubit system consists
of a path d.o.f. with left-right modes and up-down modes
and a polarization d.o.f.
The heralded single-photon source shown in Fig. 2 is

used by both setups. An ultraviolet laser with central
wavelength of 404 nm is used to pump a type-I phase-
matched β-barium-borate (BBO) crystal to generate a
photon pair in the product (polarization) state via sponta-
neous parametric down-conversion [40]. One photon is
measured as a trigger to herald the generation of its twin
photon, which is then transmitted to the state-preparation
module.
The state-preparation module in the 2-qubit (3-qubit)

setup is designed to prepare arbitrary 2-qubit (3-qubit)
product states by virtue of photonic quantum walks. Here
the coin operators required are realized by combinations of
half-wave plates (HWPs) and quarter-wave plates (QWPs),
as described in Sec. S2 of the Supplemental Material [37].
The K9 plates are pieces of glass and are used to
compensate for the path-length differences among the
interference arms in the state-preparation module in the
3-qubit setup.
The quantum gate module implements the quantum gate

to be verified, which can be seen as a black box that is

FIG. 2. Experimental setup. The heralded single-photon source (labeled by S) is realized by spontaneous parametric down-conversion
in a type-I BBO crystal. The figure shows two independent setups employed for implementing the verification protocols for the 2-qubit
CNOT gate and 3-qubit Toffoli gate, respectively. Each setup consists of three modules: a state-preparation module (labeled by P), a
quantum gate module (labeled by G), and a measurement module (labeled byM). The inset in the component panel (upper right) shows
the details of the polarization analyzing system (PAS). Each PAS consists of one polarizing beam splitter (PBS) and two single-photon
counting modules (SPCMs) and can measure the photons in the fjHi; jVig polarization basis. BD, beam displacer; K9, K9 glass plate
with the same optical length as other wave plates used.

PHYSICAL REVIEW LETTERS 128, 020502 (2022)

020502-3



expected to perform the target unitary transformation on the
input quantum states. The measurement module in the
2-qubit (3-qubit) setup is designed to realize arbitrary local
projective measurements on 2-qubit (3-qubit) systems by
using photonic quantum walks. The QWP-HWP pairs
inside the measurement module control the measurement
settings for individual qubits; see Sec. S2 of the
Supplemental Material [37]. In addition, the K9 plates
are used to compensate for the path-length differences
among the interference arms. Finally, the heralded photon
is collected by two PASs in the 2-qubit setup and four PASs
in the 3-qubit setup, where the PASs measure the polari-
zation of the input photon in the fjHi; jVig basis.
Results.—To demonstrate the efficiency and scalability

of QGV, we performed QGVon a 2-qubit CNOT gate and a
3-qubit Toffoli gate. The CNOT gate (Toffoli gate) is
implemented by inserting a HWP with its optical axis
aligned at 45° from the horizontal direction on path 1 (11)
in the 2-qubit (3-qubit) setup. The sets of test states and
measurement settings employed for verifying the CNOT
gate and Toffoli gate are detailed in Sec. S3 of the
Supplemental Material [37].
The performance of QGV is characterized by the scalings

of the significance level δ and infidelity ϵA with respect to
the number of tests N. Here we only offer an upper bound
for δ (ϵA) when ϵA (δ) is fixed. After each test, the bounds
for δ and ϵA are determined from the test results by virtue of
Eqs. (6) and (7). Since the results of a single run of QGV
suffer from statistical fluctuations, which would prevent us
from reliably evaluating the performance, we repeat the
verification procedure 50 times under the same conditions
(e.g., the set of test states and the number of tests in total).
The average values of δ and ϵA are calculated by replacing

p̂s in Eqs. (6) and (7) with
P

50
i¼1 p̂

ðiÞ
s =50 for each value of

N, where p̂ðiÞ
s is the passing rate of the ith run among the

first N tests. We also use Eqs. (6) and (7) to fit the average
results by fixing the value of p̂s to be the average passing
rate over the 50 runs of QGV among all the tests used.
The experimental results on the verification of the CNOT

gate are shown in Fig. 3, where 20 different measurement
settings and 6000 tests in total (see Sec. S3 of the
Supplemental Material [37] for details) are used in each
run of QGV. In Fig. 3(a), where ϵ is set to be 0.01, δ rapidly
drops below 0.05 within 1600 tests for both the single-run
and average results, which means that the CNOT gate is
verified efficiently with high confidence level. Alternatively,
we can set the confidence level 1 − δ to be 0.95 and calculate
ϵA. Figure 3(b) shows that ϵA descends below 0.01 after 1600
tests for both the single-run and average results, which is
consistentwith Fig. 3(a). The scaling of the average infidelity
ϵA with respect to N can be described by the power law
N−0.857 within the first 200 tests, which is quite close to the
optimal scaling of N−1 in Eq. (4). After 200 tests, the
descending speed of ϵA gradually slows down as it gets
closer to the actual infidelity and eventually converges to

0.0040 after 10 000 tests (see Sec. S4 of the Supplemental
Material [37]). The estimation error of ϵA versusN is shown
in Sec. 6 of the Supplemental Material [37]. The effects of
systematic errors are analyzed in Sec. 7 of the Supplemental
Material [37]. In both plots in Fig. 3, the single-run results
break up into discrete short segments due to the occasional
failures caused by the deviation of the actual CNOT gate
from the ideal target gate.
We then perform QPT on the CNOT gate and find that

the actual average gate fidelity is 99.7% with standard
deviation of 0.004%, which is consistent with the QGV
result. To perform QPT on the CNOT gate, we employ 36
product Pauli eigenstates as the test states and nine
measurement settings based on Pauli measurements for
each output state. The experimental details are relegated to
Sec. S5 of the Supplemental Material [37]. Here the total
number of experimental settings is 324, and the total
number of measurements is over 6 × 106, which is sub-
stantially more than that required in QGV (the number of
measurements in QPT can be reduced, but the conclusion
does not change, as explained in Sec. S8 of the
Supplemental Material [37]). These facts clearly reflect
the advantage of QGV over QPT.
To demonstrate the scalability of QGV, next we consider

the verification of the 3-qubit Toffoli gate. In this case, 32
different experimental settings and 10 000 tests in total are
employed in each run of QGV (see Sec. S3 of the
Supplemental Material [37] for details). The verification
results are shown in Fig. 4, which are analogous to the
counterparts shown in Fig. 3. To verify the Toffoli gate
within infidelity 0.03 and confidence level 95%, only 2600
tests are required. In Fig. 4(b), ϵA exhibits N−0.840 scaling
with respect to N within the first 200 tests, which is also
close to the optimal scaling of N−1. The infidelity estimator
ϵA eventually converges to 0.0148 after 40 000 tests; see
Sec. S4 of the Supplemental Material [37]. The estimation
error of ϵA for the Toffoli gate versus N is shown in Sec. S6

1 2 3 4 5
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single run
average

fitting
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N
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average
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FIG. 3. Experimental results on the verification of the CNOT
gate. The blue dots represent the results of a single run of QGV.
The green dots represent the average results of 50 runs of QGV.
The red dotted line is the fitting line for the average results.
(a) When ϵ is set to 0.01, δ is log plotted versus N. (b) When δ is
set to 0.05, ϵA is log-log plotted versus N. Within the first 200
tests, the scaling of ϵA averaged over 50 runs with respect to N is
fitted to be N−0.857 by linear regression. The error bars of ϵA are
detailed in Sec. S6 of the Supplemental Material [37].
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of the Supplemental Material [37]. In both plots in Fig. 4,
the single-run results break up more frequently than their
counterparts in Fig. 3, due to the larger deviation of the
actual Toffoli gate from the ideal Toffoli gate. Incidentally,
to perform QPT on the Toffoli gate would require 84 ¼
4096 experimental settings and millions of measurements
in total, which are quite prohibitive and much more
resource consuming than QGV.
Summary.—By virtue of photonic systems, we experi-

mentally realized efficient verification of a CNOT gate and a
Toffoli gate with local state preparations and measurements.
The experimental results clearly show that the verification
protocols can achieve nearly optimal performance without
relying on entangling operations and are substantially more
efficient than QPT. Moreover, they are scalable and robust to
the imperfections of the actual quantum gates. Notably, only
2600 tests are required to verify the Toffoli gate with fidelity
97% and confidence level 95%. Our work demonstrates that
QGV is a powerful tool for verifying quantum gates and
quantum devices, and may play a key role in the develop-
ment of quantum technologies.
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