
Variational Optimization of Continuous Matrix Product States

Benoît Tuybens , Jacopo De Nardis, Jutho Haegeman, and Frank Verstraete
Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, B-9000 Ghent, Belgium

(Received 5 June 2021; revised 18 November 2021; accepted 20 December 2021; published 10 January 2022)

Just as matrix product states represent ground states of one-dimensional quantum spin systems faithfully,
continuous matrix product states (cMPS) provide faithful representations of the vacuum of interacting field
theories in one spatial dimension. Unlike the quantum spin case, however, for which the density matrix
renormalization group and related matrix product state algorithms provide robust algorithms for optimizing
the variational states, the optimization of cMPS for systems with inhomogeneous external potentials has
been problematic. We resolve this problem by constructing a piecewise linear parameterization of the
underlying matrix-valued functions, which enables the calculation of the exact reduced density matrices
everywhere in the system by high-order Taylor expansions. This turns the variational cMPS problem into a
variational algorithm from which both the energy and its backwards derivative can be calculated exactly
and at a cost that scales as the cube of the bond dimension. We illustrate this by finding ground states of
interacting bosons in external potentials and by calculating boundary or Casimir energy corrections of
continuous many-body systems with open boundary conditions.
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The density matrix renormalization group (DMRG) and
variational matrix product state algorithms have revolu-
tionized the understanding of static and dynamic properties
of quantum spin systems [1]. Many of the low dimensional
strongly interacting systems of current interest, however,
such as the ones realized in optical lattices [2] and atom
chips [3–5], are not described by lattices but rather by
continuum field theories [6,7]. This led to the introduction
of continuous matrix product states (cMPS) [8,9], the
natural continuum analog of matrix product states
(MPS), which can also be understood as a matrix-valued
generalization of coherent states used in describing Bose-
Einstein condensates. cMPS have been explored in the
context of relativistic systems [10], Bose gasses with long-
range interactions [11], atomtronics [12], and various
applications involving coupled fields [13–15]. The cMPS
construction is closely related to the output fields in a setup
of cavity quantum electrodynamics and thus also holds
potential for experimental realization [16–18].
The cMPS ansatz is a functional of matrix-valued func-

tions QðxÞ, RαðxÞ (the variational parameters), given by

jψ ½Q;Rα�i ¼ h0jPe
R

L

0
dxQðxÞ⊗1þ

P
α
RαðxÞ⊗ψ†

αðxÞjBijΩi;

where ψ†
αðxÞ are field operators in second quantization

satisfying the usual commutation or anticommutation
relations and α labels the different modes or particle species
in the system. h0j and jBi are boundary vectors on the
D-dimensional virtual ancilla space (where QðxÞ, RαðxÞ
live), and jΩi is the empty vacuum state satisfying
ψαðxÞjΩi¼0.When applying the time dependent variational

principle to the cMPS manifold, a nontrivial matrix gener-
alization of the Gross-Pitaevskii equation, known as the
“quantumGross Pitaevskii equation,” is obtained [19]. It has,
however, turned out to be very challenging to integrate this
matrix-valued partial differential equation, in particular for
finite systems, due to the existence of divergencies occurring
when inverting the left and/or right reduced densitymatrices.
This is due to the near rank deficiency of the reduced density
matrices at the boundary. So far, cMPS algorithms have been
restricted to ground state calculations in infinite systemswith
constant [20] or periodic potentials [21].
In this Letter, we propose a cMPS ground state algorithm

for finite systems with open boundary conditions, using a
piecewise linear ansatz for the matrix-valued functions
QðxÞ and RðxÞ. The local reduced density matrices on the
corresponding segments are modeled using a quickly
converging Taylor series expansion. In comparison to the
more sophisticated basis spline approach from Ref. [21],
our approach has the crucial advantage that both the energy
and its backwards derivative can be calculated exactly and
at a very small cost, without having to refer to a lattice
discretization and matrix product state techniques.
In more detail, the ansatz consists of specifying a mesh

fxkg of strictly increasing coordinates, D ×D matrices
Qk ¼ QðxkÞ, Rk ¼ RðxkÞ, and defining QðxÞ, RðxÞ on all
other points by the linear interpolation

Rðxk ≤ x ≤ xkþ1Þ ¼ Rk þ
x − xk

xkþ1 − xk
ðRkþ1 − RkÞ

and similarly for Qðxk ≤ x ≤ xkþ1Þ. Using the language of
finite element analysis, we are modeling Q and R using

PHYSICAL REVIEW LETTERS 128, 020501 (2022)

0031-9007=22=128(2)=020501(6) 020501-1 © 2022 American Physical Society

https://orcid.org/0000-0002-5370-6010
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.020501&domain=pdf&date_stamp=2022-01-10
https://doi.org/10.1103/PhysRevLett.128.020501
https://doi.org/10.1103/PhysRevLett.128.020501
https://doi.org/10.1103/PhysRevLett.128.020501
https://doi.org/10.1103/PhysRevLett.128.020501


“tent” functions. The left and right density matrices ρ and σ,
which encode the entanglement degrees of freedom, are
defined by the Lindblad-like equations [8,9]

d
dx

ρðxÞ ¼ QðxÞ†ρðxÞ þ ρðxÞQðxÞ þ RðxÞ†ρðxÞRðxÞ

−
d
dx

σðxÞ ¼ QðxÞσðxÞ þ σðxÞQðxÞ† þ RðxÞσðxÞRðxÞ†

with boundary conditions ρð0Þ¼ j0ih0j and σðLÞ ¼ jBihBj.
The key technical tool that makes the method successful is
formulating these reduced density matrices on the same
segments as a Taylor series expansion:

ρðxk ≤ x ≤ xkþ1Þ ¼ ρð0Þk þ
Xnk
n¼1

�
x − xk

xkþ1 − xk

�
n
ρðnÞk

σðxk ≤ x ≤ xkþ1Þ ¼ σð0Þkþ1 þ
Xmk

m¼1

�
xkþ1 − x
xkþ1 − xk

�
m
σðmÞ
kþ1:

By plugging this ansatz into the Lindblad equations, we
obtain a recursive triangular linear set of equations com-

pletely determining the matrices ρðnÞk as a function of Qk,

Qkþ1, Rk, Rkþ1, and ρð0Þk , and equally so for σðnÞkþ1 as a

function of Qk, Qkþ1, Rk, Rkþ1, and σ
ð0Þ
kþ1. We also have the

equations ρð0Þkþ1 ¼
Pnk

n¼0 ρ
ðnÞ
k , σð0Þk ¼ Pmk

m¼0 σ
ðmÞ
kþ1. For a

sufficiently fine mesh fxkg, this recursion converges
rapidly such that the density matrices ρðxÞ and σðxÞ can
be obtained with machine precision using only finite values
of mk and nk (typical values are nk ≃mk ≃ 30). We have
indeed observed that it is instrumental to model the reduced
density matrices ρðxÞ and σðxÞ up to a very high precision
for the resulting algorithms to work robustly.
Once the reduced density matrices are determined,

we can evaluate the energy. For simplicity, we consider
a Lieb-Liniger Hamiltonian [22] with kinetic energy term
ðdψ†

x=dxÞðdψx=dxÞ, point interactions gψ†
xψ

†
xψxψx, and

external potential VðxÞ − μ, where the chemical potential
μ indicates that we are working in the grand canonical
ensemble, and do not fix the number of particles. Finally,
the Dirichlet boundary conditions Rð0Þ ¼ RðLÞ ¼ 0 [but
free boundary conditions forQð0Þ,QðLÞ] correspond to the
boundary conditions imposed on particles in a box, where
the wave function in first quantization vanishes at the
boundaries. The energy is given by

EðQ;R; BÞ ¼
Z

L

0

hρðxÞjHðxÞjσðxÞi
hρð0Þjσð0Þi dx

with

HðxÞ ¼ DRðxÞ ⊗ DRðxÞ þ ðVðxÞ − μÞRðxÞ ⊗ RðxÞ
þ gRðxÞ2 ⊗ RðxÞ2

and

DRðxÞ ¼ ½QðxÞ; RðxÞ� þ dR
dx

ðxÞ:

This integrandcan readilybeexpressed in termsof thematrices

Qk, Rk, ρ
ðnÞ
k , σðmÞ

k , and powers of ðx−xkÞ=ðxkþ1−xkÞ and
ðxkþ1 − xÞ=ðxkþ1 − xkÞ. Hence, the integration can be
carried out exactly in terms of the beta functions
Bðmþ 1; nþ 1Þ ¼ R

1
0 xmð1 − xÞndx. This allows for an

exact calculation of the energy for piecewise linear cMPS
as a sum:

X
k

X
n;m;a;b

Bðnþ a;mþ bÞhρðnÞk jH̃ða;bÞ
k jσðmÞ

kþ1i;

with H̃ða;bÞ
k the Taylor expansion coefficients ofHðxÞ in the

interval ½xk; xkþ1Þ. As is well known from the theory of
finite elements, a piecewise linear approximation leads to a
finite expectation value of the kinetic energy (Laplacian), as
can readily be seen by doing partial integration.
The total computational complexity for computing the

energy scales as ðnk þmkÞ · L ·D3 is exactly as in the case
of DMRG and variational MPS algorithms. Furthermore,
the exact derivatives∇Qk

E and∇Rk
E can also be calculated

at effectively the same computational cost by making use of
the idea of backwards differentiation. This is simple to

implement as the determination of ρðnÞk and σðmÞ
k only

involves simple matrix multiplications. Consider the
derivative of the energy toward the matrix elements Qk
or Rk. We find

∇kE ¼ EH þ EL þ ER þ EN

EH ¼
Xk
l¼k−1

X
n;m;a;b

Bðnþ a;mþ bÞhρðnÞl j∇kH̃
ða;bÞ
l jσðmÞ

l i

EL ¼
X
l≥k−1

X
n;m;a;b

Bðnþ a;mþ bÞh∇kρ
ðnÞ
l jH̃ða;bÞ

l jσðmÞ
l i

ER ¼
X
l≤k

X
n;m;a;b

Bðnþ a;mþ bÞhρðnÞl jH̃ða;bÞ
l j∇kσ

ðmÞ
l i

EN ¼ −E
ðh∇kρ

ð0Þ
k jσð0Þk i þ hρð0Þk j∇kσ

ð0Þ
k iÞ

hρð0Þk jσð0Þk i
;

where ∇k denotes either ∇Qk
or ∇Rk

. These terms are
clearly reminiscent of the DMRG procedure, where the
optimization of the energy at a site k involves three different
terms: the local energy term (corresponding to EH) and the
way this local tensor affects the energies at distant points
(EL and ER). Note, however, that the functional depend-
ence for the cMPS case is a highly nonlinear function of
Qk, as opposed to the linear dependence in the usual
DMRG case. The key element in determining the Jacobians
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∇kρ
ðnÞ
l and∇kσ

ðmÞ
l is the fact that all ρðnÞl depend linearly on

ρð0Þkþ1, and furthermore that

∇Qk
ρðnÞl ¼ ∂ρðnÞl

∂ρð0Þl

∂ρð0Þl

∂ρð0Þl−1

� � � ∂ρ
ð0Þ
kþ1

∂Qk

and similarly for ∇Rk
. Given an operator A, we can hence

efficiently calculate tr½AðdρðnÞl =dQkÞ� ¼ hAjðdρðnÞl =dQkÞi
by evolving hAj → hA0j ¼ hAjðdρðnÞl =dρð0Þl Þ → hA00j ¼
hA0jðdρð0Þl =dρð0Þl−1Þ → � � �. As ρðnÞl is itself recursively

defined as a function of ρð0Þl , this can easily be done by
reversing the order of matrix multiplications done to

produce the ρðnÞl . Indeed, this is a specific example of
the general structure of reverse-mode differentiation as it
appears in the context of differentiable programming. Note
that it is important to do an auspicious bookkeeping to
avoid double work. Effectively, what this approach is
generating corresponds to the Taylor approximation of
the integrated energy environments hHLjðxÞ and jHRiðxÞ
defined by

d
dx

HLðxÞ ¼ QðxÞ†HLðxÞ þHLðxÞQðxÞ
þ RðxÞ†HLðxÞRðxÞ þHðxÞ

with boundary condition HLð0Þ ¼ 0, and similarly for
HRðxÞ, the discrete analog of which is also constructed
in DMRG and related MPS algorithms.
We have thus demonstrated that the energy and its

derivatives can be calculated at a cost that scales as D3

in the bond dimension, linearly in the system size, and
linearly in the number of Taylor expansion terms needed to
capture the reduced density matrices up to machine
precision. We can then use a standard nonlinear optimiza-
tion routine to determine the variational parameters Qk and
Rk. There are two obvious choices: either we optimize over
all parameters simultaneously, or we sweep through the
systems as in the case of DMRG and only optimize over the
parameters corresponding to tensors in a certain localized
region. In the latter case, the cost for calculating the
derivatives does not depend anymore on the system size,
given that necessary auxiliary quantities have correctly
been archived. Unlike with DMRG, even the local problem
is highly nonlinear and thus not exactly solvable, so that in
practice, the first seems preferable, as one can then
immediately optimize global features. For the simulations
in this Letter, we used the global update scheme together
with the standard L-BFGS algorithm [23]. It has proven to
be very useful to initialize the cMPS with matrices Q, R
obtained from uniform cMPS calculations in the thermo-
dynamic limit, brought into a gauge for which the left

density matrix is equal to the right one, and to rescale the R
appropriately to zero around the boundary.
A very desirable feature of this cMPS optimization

method is that it is straightforward to refine the mesh over
which we are linearly interpolating the matrices. It is
certainly desirable to have a finer mesh around the
boundaries. An important note also concerns the gauge
invariance of the cMPS that we use; for the most general
cMPS, the resulting state is invariant under a local gauge
transformation on the matrix-valued functions QðxÞ and
RðxÞ. Because of the linear interpolation, this gauge free-
dom has disappeared and only one global gauge transform
degree of freedom is retained. Without loss of generality,
the right boundary vectors can hence be chosen to be a
linear superposition αj0i þ βj1i, irrespective of the bond
dimension D. For all simulations presented in this Letter,
we chose jBi ¼ j0i.
Let us illustrate this cMPS algorithm with some exam-

ples, for which we again consider the interacting Bose gas
using the aforementioned Lieb-Liniger Hamiltonian with
an arbitrary external potential, open boundary conditions,
in the grand canonical ensemble. We first set VðxÞ ¼ 0,
μ ¼ ð4.75πÞ2 and interaction term g ¼ 106, for which a
quasiexact solution is available. As the interaction is very
strong, we are in the Tonks-Girardeau regime, and the
energy can be computed in terms of free fermions filling
the single particle modes: for the given value of μ, the
system will exhibit four fermions with a total energy
ð1þ 4þ 9þ 16Þπ2 − 4μ ¼ −594.643. From uniform
cMPS calculations, it is well known that this Tonks-
Girardeau limit is actually more demanding than the one
with small effective g=ρ (commonly denoted as γ), so
this is a good test case. Running the variational cMPS
algorithm with bond dimension D ¼ 8 and using 32
equidistant interpolation points yields an energy equal to
ED¼8 ¼ −594.45. As shown in Fig. 1(a), the energy density
and particle density are almost indistinguishable from the
Tonks-Girardeau result, but the cMPS exhibits a small
amount of interaction energy, which completely vanishes
for the Tonks-Girardeau state. Note that the cMPS manages
to obtain smooth results for particle and energy densities
despite the rather coarse grid on which the piecewise linear
model for QðxÞ and RðxÞ is defined. Only the interaction
energy (which contributes little to the total energy) shows
some artifacts resulting from this grid. We also calculated
the entanglement spectrum as a function of position; see
Fig. 1(b). Note that the cMPS accurately captures the
D ¼ 8 largest values in the entanglement spectrum of the
Tonks-Girardeau state, exactly as we would expect from
the familiar intuition with MPS on the lattice. The only
discrepancies are that sharp crossings in the entanglement
spectrum, where a new value becomes higher at a certain
point of x. These crossings cannot be exactly captured by
our piecewise linear construction of Q and R and are
replaced with a smoother transition. Note, as an aside, that
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the Tonks-Girardeau state with N particles has an exact
cMPS representation of bond dimension 2N and is of the
form QðxÞ ¼ 0,

RðxÞ ¼
XN
k¼1

Z⊗ðk−1Þ ⊗
�
0

ffiffiffi
2

p
sinðπkxÞ

0 0

�
⊗ 1⊗ðN−kÞ;

and boundary conditions jBi ¼ j1i⊗N .
Let us next move to a more challenging problem with

many more particles. We consider a box with an external
potential VðxÞ ¼ μ · sinð15πxÞ, with μ ¼ 1749 and g ¼ 35.
In that case, the dimensionless interaction strength is
g=ρ ¼ 1.050 996 6, while the ground state density, kinetic
energy, potential energy, and interaction energy profiles are
depicted in the Supplemental Material [24]. Note that there
are around 33 particles in the box but that the cMPS ansatz
does not exhibit particle number symmetry and hence
allows for particle number fluctuations. We expect a
sufficiently converged cMPS can take into account arbi-
trary external potentials in contrast to the standard local
density approximation (LDA) that is usually performed
[5,25] by employing the Yang-Yang thermodynamics [26]
of the Lieb-Liniger gas. In Fig. 2, we show how the LDA
can only predict the correct density profiles whenever
∂xρðxÞ=ρðxÞ ≪ 1 but fails to reproduce the exact density

profile obtained by cMPS outside this regimes by modu-
lating the strength of the external potential VðxÞ in
comparison to the chemical potential μ. The effect on
the energy density, however, is less significant.
As a final example, we calculate the boundary or Casimir

energy of such an interacting Bose gas. We therefore study
the system in a box of lengthL ¼ 1 atVðxÞ ¼ 0,μ ¼ 10 000,
and g ¼ 1000 using a cMPS with D ¼ 64 and 300 grid
points and obtain a total energy of E ¼ −221 056.1, which
includes the contribution of the chemical potential term.
The different energy density profiles can be found in the
SupplementalMaterial [24]. The total particle number in this
system has expectation value hN̂i ¼ 33.9999 with standard

deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN̂2i − hN̂2i

q
¼ 0.0256. This has to be com-

pared with the results from a uniform cMPS with bond
dimension D ¼ 64 in the thermodynamic limit, which are
e∞ ¼ −226 719.9 for the energy density and 34.7840 for the
particle density. The resulting boundary or Casimir energy is
given by EB ¼ E − Le∞ ¼ 5663.8. Note that the correct
energy density obtained with the Bethe ansatz at γ ¼ g=ρ ¼
28.748 88 is given by −226 721.5, whereas the Bethe ansatz
prediction for the boundary energy (for open boundary
conditions in the thermodynamic limit) is given by EB ¼
5676.0 [27,28], which is close to our value obtained for a
system of length L ¼ 1. Note that the finite cMPS has very
few particle fluctuations and thus almost perfectly respects
theU1 particle number symmetry. Indeed, themaximal value
of the order parameter jhψðxÞij over all x is given by 0.0016
for the finite cMPS, whereas the uniform cMPS at the same
bond dimension has jhψðxÞij ¼ 1.5283, indicating that the
latter does significantly break the U1 in order to reduce
entanglement. Related to this is the fact that the finite cMPS
result captures the strong Friedel oscillations that exist in this
system at these large values of γ and that these also persist in
the entanglement spectrum (Fig. 3).

(a)

(b)

FIG. 1. (a) Density and energy profiles of the ground state of an
interacting Bose gas in a box of length L ¼ 1, VðxÞ ¼ 0,
μ ¼ ð4.75πÞ2, and g ¼ 106, using cMPS with D ¼ 8 as well
as using the Tonks-Girardeau state (which is exact for g ¼ ∞).
(b) Corresponding entanglement spectrum and entanglement
entropy for a left-right bipartition as function of the cut position
x for both the cMPS and the Tonks-Girardeau state.

FIG. 2. Density profiles corresponding to the parameters μ ¼
1749 and g ¼ 35 but with varying strength of the external
potential. Comparison between D ¼ 32 cMPS results (blue line)
and LDA approximation based on Yang-Yang thermodynamics
of the Lieb-Liniger gas (red line).
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In summary, this Letter introduces a scalable and robust
variational method for studying interacting particles in a
one-dimensional box using nonuniform continuous matrix
product states, modeled using ideas from finite element
analysis. A major technical bottleneck in cMPS algorithms
was resolved by introducing a novel triangular set of
coupled equations for the Taylor coefficients of the reduced
density matrices, and this allowed for a quasiexact deter-
mination of both the energy and its derivatives. There are
many obvious ways in which these results can be extended.
It is, e.g., possible to use a quadratic interpolation scheme
as opposed to a linear one; the triangular set of equations
for the reduced density matrix is retained that way. It would
also be possible to work in the left gauge for which
QðxÞ¼−1

2
RðxÞ†RðxÞþiKðxÞ and interpolate KðxÞ instead.

Alternatively, one can also investigate the use of spectral
methods to model the cMPS matrix functions.
In a forthcoming publication, we will demonstrate how

preconditioners can be constructed in order to speed up the
optimization algorithms in terms of the local reduced
density matrices and how the time dependent variational
principle can be adopted to the piecewise linear setting so
as to use nonuniform cMPS for time evolution while
preserving local constants of motion such as the energy.
We will also explore how cMPS algorithms can be used to
simulate realistic higher-dimensional quantum many-body
systems, either ones that are confined in 2 directions such
as in optical lattice experiments [for this, it will be enough
to include multiple species RαðxÞ], or systems with a
spherical symmetry in which the cMPS would represent
the radial part of the wave function (and angular compo-
nents again appear as different modes).
The elephant in the room is the question of whether

cMPS algorithms of this kind exhibit any advantage over
DMRG on a discretized grid. For relativistic quantum
field theories with UV divergencies, where the lattice
discretization plays the role of a very effective regulator,
the answer is unclear. But for nonrelativistic systems
such as the ones created in optical lattices and atom
chips, especially with shallow potentials, the lattice dis-
cretization seems to requires a very fine lattice spacing. The
presence of multiple length scales then tends to result in
convergence issues with DMRG [29,30], making the

approach particularly inconvenient at high densities. The
cMPS approach in this Letter offers a cleaner and more
natural approach to tackle such problems and can more
easily be combined with the iterative refinement strategies
proposed to improve DMRG.
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Note added.—The results presented in this Letter can be
obtained using the open-source Julia package CMPSKit.jl
[31], the details of which will be described elsewhere.
A notebook with the necessary code to exactly reproduce
the results of this Letter is also provided [32].
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