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Epithelial monolayers are subjected to various mechanical forces, such as stretching, shearing, and
compression. Thus, its mechanical response to external loadings is essential for its biological functions.
However, the mechanism of the fracture failure of the epithelial monolayer remains poorly understood.
Here, by introducing a new type of topological transition, i.e., detach transition or T4 transition, we develop
a modified cellular vertex model to investigate the rupture of the cell monolayer. Interestingly, we find a
brittle-to-ductile transition in epithelial monolayers, which is controlled by the mechanical properties of
single cells and cell-cell contacts. We reveal that the external loadings can activate cell rearrangement in
ductile cell monolayers. The plastic deformation results from the nucleation and propagation of “pentagon-
heptagon defects” in analogy with the topological defects commonly seen in 2D materials. By using a
simplified four-cell model, we further demonstrate that the brittle-to-ductile transition is induced by the
competition between cell rearrangement and cell detachment. Our work provides a new theoretical
framework to study the rupture of living tissues and may have important implications for many other
biological processes, such as wound healing and tissue morphogenesis.
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An epithelial monolayer, a single-cell-thick tissue that
covers most surfaces of animal organs, is subjected to
various internal or external mechanical forces and thus
undergoes large deformations during embryonic morpho-
genesis [1–3] and many physiological activities such as
respiration, digestion, and cardiac pulses [4–6]. For example,
the typical strain of human skin during posture changes or
sports is about 25% [7]. Cyclic changes in blood pressure
can stretch blood vessel walls circumferentially and induce a
strain up to 15% [8]. The maximum strain and strain rate of
mitral valve during the beating of human hearts can reach
30% and 400% s−1, respectively [9,10]. Furthermore, the
compressive forces during embryonic development are big
enough to buckle and fold tissues [11] and drive the
morphogenesis of brain cortex [12], gut villi [13], and optic
cup [14]. Thus, the mechanical properties of epithelial
monolayers must be excellent enough to maintain their
integrity under these mechanical loadings.
Despite the fact that epithelial monolayers can dissipate

mechanical stress to maintain epithelial homeostasis through
cell division, intercalation, and extrusion [15–19], tissue
fracture may still occur when cell-cell adhesion is impaired
or excessive stretch is applied. For example, patients with
mutations in adherens junction proteins, desmosomal pro-
teins, or actin regulators suffer from tissue fragility defects
and disrupted barrier functions [20]. Mechanical ventilation
is known to cause acute lung injury because of the over-
stretching to alveoli during the treatment of acute respiratory

distress syndrome [21,22]. Interestingly, the motility of
Trichoplax adhaerens, a highly dynamic simple organism,
can lead to the fracture of its epithelial tissue [23]. Moreover,
cracks may appear around the location of weak adhesion
between neighboring cells in confluent epithelial sheets,
causing woundlike holes [24] and even fracture failure [25].
Similarly, monolayers can release the excessive hydraulic
pressure through the breakage of cell-cell adhesion [26,27].
Although the mechanics of epithelial monolayers is an
essential part of its functions, little is known about how
fracture failure occurs in response to mechanical stress and
large deformation, and a simple theoretical model to
characterize monolayer fracture is still lacking.
First, we treat each cell as an individual polygon

containing several vertices [Figs. 1(c) and 1(d)] based on
the two-dimensional vertex model [28–33]. For simplicity,
here we assume the properties of each cell are identical. The
energy of the system is

U ¼
X

I∶cell

1

2
KðAI − A0Þ2 þ

X

I∶cell

1

2
ΓL2

I þ
X

ab∶edge
Λlab: ð1Þ

The first term in Eq. (1) is the energy of cell area elasticity
with areal stiffness K [29,34], where AI and A0 are the
current and preferred area of the Ith cell. The second term
represents the perimeter elasticity originating from actomyo-
sin contractility, where Γ is the contractile modulus [35].
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The third term is the interfacial energy with a line tension Λ,
which originates from the competition between cortical
tension and intercellular adhesion [29,36]. Λ can be negative
if adhesion energy is bigger than cortical tension or positive
if cortical tension dominates. LI denotes the perimeter of the
Ith cell and lab is the length of the contact edge connected by
adjacent vertices a and b. The morphological changes of the
monolayer can be described by dra=dt ¼ Fa=η, where η is
the viscous coefficient, ra and Fa ¼ −∂U=∂ra are the
coordinates and force acting on vertex a, respectively.
The topological transitions in the classical vertexmodel are

based on geometrical criterions, such as length (T1 transition,
to model cell intercalation [49]), area (T2 transition, to
describe cell death [50]), and distance (T3 transition, to
model cell merging process [44]). For example, when the
edge between two neighboring cells is shorter than a thresh-
old, the edge will shrink to a point and another two cells
become new neighbors, so that T1 transition occurs (see
Fig. 1). However, the above geometrical criteria are not
relevant to fracture and cannot be used to describe monolayer
fracture since they do not allow for the creation of intracellular
spacing. To solve this problem, we propose a failure criterion
and define a detach transition (T4 transition) [Fig. 1(d)],
based on the calculation of intercellular stress on each edge
(Supplemental Material [37] and Fig. S1). The 2D normal
stress on an edge is

sab ¼ Fn
ab=lab; ð2Þ

where lab is edge length, andFn
ab is the normal component of

the traction force on this edge. The cell-cell adhesion will
break when sab > scr, where scr is the critical stress as a
material property of cell-cell contact (e.g., the adhesive links
including E-cadherin [51] and tricellular junction proteins
[45]). After this detach transition occurs, a crack between two
cells appears, and new short edges are created in some cells so
that the edge number of these cells increases [Fig. 1(d)].
Similar failure criteria has been used in the system of soft

sticky balls connected by springs [23], and nonconfluent
epitheliumcan also beobtained through replacing the original
vertex by a small triangular extracellular space in a vertexlike
model [46] or through energy minimization in a simple
four-cell model [52].
We can normalize all the equations with characteristic

length
ffiffiffiffiffi
A0

p
and characteristic time η=KA0 and obtain three

dimensionless parameters: Γ̃ ¼ Γ=KA0, Λ̃ ¼ Λ=KA3=2
0 ,

and s̃cr ¼ scr=KA0. Thus, we have
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The intracellular stress σ̃cellxx and tissue stress σ̃tissuexx can be
derived (Supplemental Material [37]).
Now, we can investigate the uniaxial stretching of cell

monolayers. If the loading is very quick, there is not
enough time for cell rearrangement, which is the case in
most experiments [25,26]. In contrast, here we consider a
quasistatic displacement-controlled uniaxial tensile test,
where the loading is slow enough to allow the system to
reach the equilibrium at each loading step and allow cell
rearrangement to happen, but fast enough to eliminate the
influence of cell division and death. Notice that epithelial
cells usually take more than 10 h to finish cell cycle [53],
while a typical T1 transition occurs in tens of minutes [54].
Therefore, here we neglect cell division and death and only
consider T1 transition and detachment transition (Fig. 1).
Confluent cell monolayer can undergo a solid-to-liquid

transition (SLT) at Λ̃ ¼ −4Γ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n tanðπ=nÞp

[30], where n is
the number of cell sides (Fig. S2 [37]). Here, we focus on
the solid phase (jammed monolayers) and first consider a
hexagonal lattice (Figs. 2 and 3), which is known as the
ground state of the solid phase [30,55]. Although hexago-
nal lattice sounds ideal, it is quite common in tissues, such
as marginal cells of stria vascularis [56], Drosophila wing
disk [57], and lens fiber cells [58]. Here we perform the
uniaxial tensile test in the zigzag direction of hexagonal

FIG. 1. Topological transitions in cell monolayers. (a) The
fracture failure (scale bar, 1 mm) and (b) T1 transition under
uniaxial tensile loading in experiments (scale bar: 25 μm). See
Supplemental Material [37] for details. (c) T1 transition in vertex
model. (d) Detach transition (T4 transition) we defined.

FIG. 2. A brittle monolayer (Γ̃ ¼ 0.16, Λ̃ ¼ −0.7, and s̃cr ¼ 3)
under displacement-controlled uniaxial tensile loading. (a) Time
evolution of monolayer morphology. (b) Corresponding time
evolution of intracellular stress σ̃cellxx . To induce failure in the
middle, a nick is made to concentrate stress [25].
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lattice [59]. Interestingly, we find different parameters in
this solid region can yield completely different mechanical
responses.
Figure 2 and Videos S1 and S2 (in the Supplemental

Material [37]) show a clearly catastrophic brittlelike failure
without observable plastic elongation, which is further
demonstrated by the sharp fracture surface, negligible cell
rearrangement [Fig. 4(b)], and plastic strain [Fig. 4(c)].
The corresponding stress-strain curve further confirms its
brittlelike nature, in which the sudden fracture occurs at a
large elastic strain of 33.4% [blue curve in Fig. 4(a)].
Depending on parameters, the breaking elongation of brittle
monolayers can vary greatly from 30% to more than 100%

(Fig. S8). In fact, due to their soft nature, a good indicator
of brittleness and ductility of soft materials (e.g., tissues
and hydrogels) is not the elongation at break, but the plastic
deformation before rupture.
Strikingly, as Λ̃ decreases to −1.19 in Fig. 3 and Videos

S3 and S4 [37], apparent plastic elongation with classical
characteristics of ductile fracture are observed. Monolayer
rupture occurs at a large strain of 109% with a permanent
plastic elongation of 60%. Notably, an apparent necking
and rough fracture surfaces are also observed, suggesting
significant plastic flow occurs before fracture [Figs. S4(a),
S4(b), and S4(d) [37] ]. This is further confirmed by its
stress-strain relationship [the green curve in Fig. 4(a)].

FIG. 3. A ductile monolayer (Γ̃ ¼ 0.16, Λ̃ ¼ −1.19, and s̃cr ¼ 3) under displacement-controlled uniaxial tensile loading. (a) Time
evolution of monolayer morphology. The plastic deformation is induced by the nucleation and propagation of pentagon-heptagon
defects, which are usually seen in graphene. (b) Corresponding time evolution of intracellular stress σ̃cellxx shows obvious distortions of
stress field around pentagon-heptagon defects.

FIG. 4. Brittle-to-ductile transition (BDT) of the epithelial monolayer is controlled by the mechanical properties of single cells and
cell-cell contacts. (a)–(d) Hexagonal cell lattice. (a) Stress-strain relationship for various Λ̃. (b) The accumulated number of T1
transitions during stretching. Dashed lines indicate where curves stop. (c) The elastic strain, plastic strain, elastic modulus, and
fracture strength as the function of Λ̃. (d) Phase diagram of BDT. (e)–(g) Irregular monolayers. (e) Stress-strain relationship for
various Λ̃. (f) The proportion of cells with n cell sides before loading begins and after monolayer rupture occurs. (g) Irregular
monolayer morphology during brittle and ductile fracture. Left, a brittle case at 35% strain [blue curve in (e)]. Right, a ductile case at
90% strain [green curve in (e)].
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Therefore, Figs. 2 and 3 together reveal a clear brittle-to-
ductile transition as Λ̃ decreases, which is also confirmed
by the stress-strain curves in Fig. 4(a).
The plastic deformation in Fig. 3 is very similar to the

germ-band elongation during Drosophila morphogenesis
[47,48]. This plastic deformation results from T1 transition,
which is also known as cell rearrangement or cell inter-
calation [17,60–62] as shown in Fig. 1. We find if T1
transition occurs inside the monolayer, two pair of penta-
gon-heptagon defects will appear [Fig. 1(c)]. In contrast, if
T1 transition occurs on the boundary, only one pair of
pentagon-heptagon defects and one pentagonal cell will
appear [Fig. 1(c)]. Similar to many 2D materials, e.g.,
graphene [63], a pentagon-heptagon defect resembles a
disclination dipole, which can be regarded as an edge
dislocation. We find dislocations keep nucleating on the
boundaries, especially near the crack tip, and then
propagate to the interior of the cell monolayer and finally
end up at another boundary (Fig. 3, Videos S3 and S4, and
Fig. S5 [37]). The number of T1 transitions increase as the
stretching continues [Fig. 4(b)], indicating permanent
plastic deformation is accumulating. Thus, we conclude
that the external loadings can activate cell rearrangement in
ductile cell monolayers.
We also find, besides the stress concentration at the crack

tip, that there are obvious distortions of stress field around
each pentagon-heptagon defect [Fig. 3(b)], which is quite
similar to the theoretical description of a disclination dipole
in graphene [63]. Furthermore, as the monolayer becomes
more ductile, it will also become softer (indicated by elastic
modulus) and more fragile (indicated by fracture strength),
yet the elastic range is approximately the same (indicated
by maximum elastic strain) as shown in Fig. 3(c).
Similar to the effects of Λ̃ [Fig. 4(a)], as Γ̃ decreases,

there also exists a brittle-to-ductile transition (Fig. S6 [37]).
Furthermore, we find that the closer to the solid-fluid
transition curve [Fig. 4(d)], i.e., the lower Λ̃ and Γ̃ [29,30],
the more ductile the cell monolayer becomes, indicated by
the increase of the cumulative number of T1 transitions
[Figs. 4(b), 4(d), S6, and S7]. Therefore, we conclude that
the brittle-to-ductile transition of the epithelial monolayer is
controlled by the mechanical properties of single cells and
cell-cell contacts, such as the relative contractile modulus
(Γ̃), relative line tension (Λ̃), and relative intercellular
strength (s̃cr).
Given that in many tissues the cell monolayer is not a

regular hexagonal lattice [54,60,64], we also investigate the
uniaxial stretching of irregular cell monolayers. The
irregular lattice with a diverse number of cell sides is
generated through Voronoi tessellation and undergoes a
local minimization of free energy, i.e., the annealing
process, before stretching. The irregular lattice we obtained
through this method [the gray column in Fig. 4(f)] is quite
similar to the experimental samples where hexagonal cells
are about 40% [64].

We find that the brittle-to-ductile transition also exists in
the irregular cell monolayer [Fig. 4(e), Videos S5 and S6
[37]), and its mechanical responses are qualitatively the same
as the hexagonal cell monolayer (Figs. S6 and S7). However,
since the irregular cell monolayers have more preexisting
disclination- and dislocationlike defects compared to the
regular hexagonal monolayer, cell rearrangements occur
more easily, more frequently, and earlier [55], so that the
yield stress and fracture strength of the cell monolayer are
smaller. Furthermore, the nonuniform nature of irregular
lattice leads to local stress concentration, so that many
detachment transitions occur and many small cracks are
created during stretching, especially in brittle monolayers
[Fig. 4(g), left]. Eventually, these small cracks may coalesce
to form woundlike holes, which is in good agreement with
the crack morphology observed in experiments [24,25].
Interestingly, in ductile cell monolayers, the irregular

lattice becomes more regular, i.e., the proportion of hex-
agonal cells increases [Fig. 4(f), Video S7 [37] ] under
uniaxial tensile loading, which is consistent with the
prominent increase of topological order of tissues during
development [54,57,60,65]. This hexagonal ordering
becomes inapparent as the monolayer becomes more brittle,
since there is negligible cell rearrangement in brittle mono-
layers [Fig. 4(f)]. Therefore, these results indicate that the
brittle-to-ductile transition can also affect the evolution of
topological order of epithelial tissues during development.
To get more insight into brittle-to-ductile transition, we

investigate T1 transition and detachment transition by
using a simple four-cell model [36,66]. Without external
force (F̃ ¼ 0), the total energy of the four-cell system has
two local minimums, i.e., two equilibrium states before and
after T1 transition, as the length of shared edge changes
[Fig. 5(a)]. We find, in this case, the energy barrier for T1
transitionΔŨ0 becomes smaller as the parameters approach
the solid-to-liquid transition boundary [Fig. S10(a) [37] ],
which is consistent with previous studies [36,66]. When a
tensile force F̃ is applied along the zigzag direction, the
total energy becomes higher, yet the energy barrier ΔŨF̃
and the equilibrium length of the shared edge before T1
transition l̃F̃ decreases, so that T1 transition will happen
more easily [Figs. 5(a), 5(b), and S10(b)].
On the other hand, as the external force F̃ increases, the

stress along the shared edge s̃ab will become larger due to
the decrease of the equilibrium length of the shared edge
[see Eq. (2)] so that the detachment transition is also
more likely to occur. Thus, T1 transition and detachment
transition compete with each other to determine which
process will happen first. We find T1 transition will occur
first for small Λ̃ or Γ̃, while detachment transition will
occur first for large Λ̃ or Γ̃ [Figs. 5(c) and S11(b) [37]]
during the loading process. Further calculation shows that
T1 transition will occur first near the boundary of solid-to-
liquid transition in the phase diagram, so that the cell
monolayer is ductile [Fig. 5(d)], which well explains the
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brittle-to-ductile transition we found in Fig. 4. We further
demonstrate that the boundary of brittle-to-ductile transi-
tion is mainly determined by s̃cr, and the decrease of s̃cr
leads to a larger brittle region in the phase diagram
[Fig. S11(c)], which is similar to the effect of ethylenedi-
amine tetra-acetic acid, a chelating agent that disrupts the
adhesive links at the cell-cell interface and causes the
monolayer to be more fragile [25]. Therefore, we conclude
that the competition between T1 transition and detachment
transition leads to the observed brittle-to-ductile transition
of the cell monolayer.
In summary, we define a new type of topological

transition, i.e., detach transition or T4 transition, so that
the fracture failure can be studied in the framework of a
vertex model. We show that there exists a brittle-to-ductile
transition in epithelial monolayers when the mechanical
properties of individual cells and cell-cell contacts change,
and the transition is attributed to the competition between
cell rearrangement and cell detachment. Interestingly, in
ductile monolayers, cell intercalation can lead to the plastic
deformation characterized by the nucleation and propaga-
tion of pentagon-heptagon defects that are commonly seen
in 2D materials. Our results demonstrate how the mechani-
cal properties of individual living cells and their interaction
determine the mechanical response of larger scale tissues.

The brittle-to-ductile transition still exists even when the
healing process is present (Fig. S9 [37]). Similar brittle-to-
ductile transitions were also observed in amorphous solids
when attraction (similar to the line tension in our work) [67]
and annealing degree changed [68,69]. Our findings
provide a new theoretical framework to study the mechan-
ics of cell monolayers and may also have important
implications for other relevant biological processes accom-
panied by significant cell rearrangement and detachment.
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