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We investigate the origin of yield stress aging in semidense, saline, and turbid suspensions in which
structural evolution is rapidly arrested by the formation of thermally irreversible roll-resisting interparticle
contacts. By performing optical tweezer three-point bending tests on particle rods, we show that these
contacts yield by overcoming a rolling threshold, the critical bending moment of which grows
logarithmically with time. We demonstrate that this time-dependent contact-scale rolling threshold
controls the suspension yield stress and its aging kinetics. We identify a simple constitutive relation
between the contact-scale flexural rigidity and rolling threshold, which transfers to macroscopic scales.
This leads us to establishing a constitutive relation between macroscopic shear modulus and yield stress
that is generic for an array of colloidal systems.
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Our understanding of aging in colloidal suspensions has
been guided for decades by studies of transparent sterically
stabilized experimental models [1,2] in which van derWaals
forces are absent and contact formation excluded. In such
systems, aging results from a slow (glasslike) microstruc-
tural evolution [3,4]. But most colloidal suspensions in the
environment, industry, or civil engineering, are saline and
turbid. Turbidity signals the existence of an index contrast
between particles and suspending fluid, i.e., of attractivevan
derWaals forces; salinity introduces ions that screen particle
charges, thus weakening the repulsive Coulombic forces.
These two properties hence conspire to facilitate the for-
mation of solid-solid interparticle contacts.
It was very recently pointed out that moderate levels of

ionic strength and index contrast suffice to bias the balance
between Coulombic repulsion and van der Waals attraction
to the point that no repulsive barrier limits the formation of
adhesive, roll-resisting, and thermally stable interparticle
contacts, with the consequence that, at intermediate (30%
to 40%) packing fractions, the microstructure freezes
within seconds of flow arrest [5]. These systems, however,
do present mechanical aging on timescales up to hours [6–
9], much beyond structural arrest. For a broad class of real-
life suspensions, mechanical aging is hence nonstructural,
and governed by contact scale physical processes.
Identifying these processes is a major challenge, requir-

ing joint advances in experiments (spotting and character-
izing the relevant contact scale processes) and theory
(modeling them and deducing macroscopic properties).
Macroscopic shear modulus (G0) aging can be related to the
growth of contact-scale flexural rigidity [5]. But, the most
crucial issue in most practical situations, the mechanism of
macroscopic yield stress (σy) aging, is wide open.

Most yield stress models for suspensions [10,11] indeed
assume interactions to be centrosymmetric, hence cannot
offer any insight as to how roll-resisting contacts determine
macroscopic modulus and yield stress aging. Interparticle
flexural contacts were experimentally shown to yield by
overcoming a rolling threshold [12], but no experimental
evidence exists for microscopic yield aging in adhesive
contacts between colloidal particles. And no direct, quan-
titative, link has ever been established between contact and
macroscopic yielding in any attractive colloidal suspension.
Here, we address these interrelated issues by investigat-

ing yielding at both the macroscopic and contact scales in
aqueous suspensions of Stöber silica particles flocculated
by CaCl2 at moderate ionic strengths (I). By performing
three-point optical tweezer (OT) bending tests on particle
rods, we show that contacts yield when reaching a rolling
threshold, and that the associated critical bending moment
My ages. We demonstrate that this contact-scale process
controls macroscopic yield stress aging as σyðtwÞ ∝
MyðtwÞ=a3 with tw the age and a the particle radius. It
leads us to identify a constitutive relation between the
macroscopic shear modulus and yield stress σyðtwÞ ∝ffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ðtwÞ

p
=a, the prefactor being a material-dependent

constant of unit N1=2. Our finding entails that it is possible
to track the growth of the yield stress by monitoring the
shear modulus, an observation with far-reaching conse-
quences for real-life situations.
Interparticle contacts are probed using Pantina and

Furst’s method [13,14], a three-point OT bending test on
a rod comprising an odd number of particles [see Fig. 1(a)].
During a test, two fixed traps hold the rod extremities; a
third one grabs the central particle before being translated
perpendicularly to the rod, at a velocity slow enough to
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avoid hydrodynamic drag effects. Sample preparation and
measurement protocol follow the Method section of
Ref. [5] except otherwise stated.
Here, we perform these tests using particles of diameter

2a ¼ 1.9 μm. At all the considered ionic strengths, inter-
particle contacts are thermally stable [5] and cannot be
opened by pulling the particles apart with optical traps.
Consistently, the maximum force OTs can exert (≃15 pN),
which is ∼3 times larger than those we will use here, is
much smaller than the Derjaguin-Muller-Toporov (DMT)
[15] estimate for the pull-off force, πaW ≃ 24 nN, with W
the work of adhesion [16].
Force and deflection measurements rest on image analy-

sis with subpixel resolution [18]. Before each test, the
average trap stiffness k is measured by monitoring the
thermal fluctuations of particles held by the three traps.
Once the rod formed, before loading, the average positions
of both end particles are measured to identify the end trap
locations. These two points define the x axis. Loading is
performed along the transverse horizontal axis, denoted y.
The force exerted on the central particle is obtained, in
essence, as f ¼ kðΔy1 þ ΔyNÞ, with Δy1 and ΔyN the y
displacements of both end particles from the end trap
locations. Finally, the rod deflection δ is measured as the
difference between the y coordinates of the center and end
particles. In practice, rods are not strictly linear: the
associated misalignments are corrected by analyzing the
3D rod structures [5].
Typical force vs deflection data are reported in Fig. 2(a),

for a few aging times (tw), as counted starting from the
formation of the last bond in the assembly process.
At small deflections, rods respond elastically with f

increasing essentially linearly with δ. Meanwhile, the rod

deformation is well-described by the Euler-Bernoulli beam
equation [solid blue line in Fig. 1(b)], which entails that
contacts support finite torques, i.e., resist rolling [5]. The
associated effective bending rigidity is k0 ¼ 8ðN − 1Þ3f=δ,
with N the number of beads. Modeling the rod as a series of
beads connected by roll-resisting contacts, yields the
contact scale flexural stiffness kr ¼ k0a2=Γ with Γ ≃ 96
a slightly N-dependent parameter [19]. These stiffnesses
grow quasilogarithmically with time [5], which attests to
the existence of contact-scale aging dynamics.
With the increasing deflection, yielding eventually

occurs, quite abruptly, without any evidence of incipient
plastic activity, at a yield point ðfy; δyÞ. Immediately
afterwards [Figs. 1(a) and 1(b), green data], the rods
systematically display a triangular shape, which evidences
that a single contact (the apex, with abscissa x⋆), has rolled.
Noticeably, the rods do not break open after yielding.
To shed light on the yielding mechanism, we perform a

large number of tests and report the x⋆ distribution in
Fig. 1(c). If yielding resulted from frictional sliding, the
distribution of x⋆ would be uniform, because the shear
force along a bent rod is. In contrast, we find that yield
events occur overwhelmingly at x⋆ ¼ �a, i.e., in the
contacts formed by the central particle, which is where
the local moment My ¼ ðfy=2Þ½L=2 − jx⋆j� is maximal.
These data hence unambiguously demonstrate that yielding
results from the crossing of a rolling threshold [12].
Accordingly, the rare yield events occurring away from

the center particle must be attributed to experimental
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FIG. 1. (a) Two snapshots of a 13 silica particle rod, just before
and just after a yielding event. The colored circles show the
particle positions as reconstructed from subpixel image analysis
(radii are reduced for better legibility). Scale bar ¼ 5 μm. (b) The
reconstructed particle positions in the ðx; yÞ plane, superposed,
after magnification along the y axis. Pre-yielding positions (blue)
agree with the Euler-Bernoulli equation (line); post-yielding ones
(green) form two straight segments connected at a finite angle.
(c) Distribution of first yield event locations (x⋆): ∼70% occur
near the rod center, where the bending moment is maximum.
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FIG. 2. (a) Typical bending force (f) vs deflection (δ) curves
after three aging times. Circles mark the yield points ðfy; δyÞ.
(b) Log-lin plot of the critical bending moment (My) versus aging
time (tw). Error bars are deduced from measurement uncertainties
in fy and x⋆. (c) Critical moment (My) versus flexural stiffness
(kr) for all tw and I.
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artifacts, such as contact-scale defects or poorly formed
rods. Therefore, in order to carry out a quantitative, time-
resolved analysis of roll yielding, we only retain the x⋆ ¼
�a events, and report My vs tw in Fig. 2(b). Remarkably,
My grows roughly logarithmically at late times, like the
flexural stiffness kr does [5]. It is also essentially I
independent over the studied I range, over which the
charge carried by our particles is constant [5,9].
It was never previously reported that the contact scale

rolling threshold grows logarithmically in time. This
observation, hence, constitutes a key experimental finding
about adhesive colloidal suspensions.
Plotting My vs kr as parametrized by tw [Fig. 2(c)], we

find that these two contact properties quite nicely obey the
relation (solid line)

My ¼ gkαr ð1Þ

with α ¼ 1=2 and g ¼ ð3.56� 0.3Þ × 10−10 N1=2 m1=2.
This relation implies that the critical bending angle θy ¼
My=kr ¼ g=

ffiffiffiffiffi
kr

p
decreases with tw, i.e., that contacts

become increasingly brittle as they age. This is directly
visible in Fig. 2(a) as δy clearly decreases with tw. It points
to a contact yield mechanism (contact line depinning) akin
to fragile rupture.
In this OT study, we focused on a single particle size, due

to the difficulties in accumulating data points. While g is
a priori a dependent, the proximity of the measured
exponent α to 1=2 suggests it might be prescribed by
simple physical principles, with the scaling MyðtwÞ ¼
g × ½krðtwÞ�1=2 constituting a generic property of the con-
tacts between microspheres. We explore this issue in the
rest of the Letter.
For a contact to resist rolling, its contour must remain

pinned. Its flexural rigidity, which results from elastic
strains inside the particles, is determined by the contact
geometry. Flexural aging hence demonstrates that the
contact radius ac grows. Following Furst et al. [13], we
estimate k0 ¼ 12πEa4c=a3 [20], the bending stiffness of a
rod of diameter ac and Young’s modulus E, which yields

kr ¼
12πEa4c

aΓ
: ð2Þ

This a4c scaling is supported by shear modulus aging data
for a range of particle sizes [5]. It arises because flexion
introduces a linear stress σ ∝ θy throughout the contact
area Ac (y being the bending direction), so that integrating
the associated torque yields

R
Ac
dydzyσ ∼ a4cθ.

The growth of ac points to a type of sintering process
(e.g., the progressive formation of siloxane bridges [21–
23]), which increases the overall cohesion energy inside the
contact area. Thus, here, adhesion results from two distinct
types of interactions: van der Waals attraction and intra-
contact bonds formed by sintering. The former is time-

independent and invariant under particle rotations: it brings
about contact formation and adhesion, yet does not
introduce rolling resistance, which is why contacts do
not display measurable flexural rigidity immediately after
they form [5]. Intracontact bonding is time dependent and
begets rolling resistance.
We construct a schematic description of such a contact,

in the spirit of contact theories [24], all of which relate the
contact diameter to the adhesion energy W via

acðtwÞ ¼ A

�
3πa2WðtwÞ

8E�

�
1=3

ð3Þ

with E� ¼ E=ð1 − ν2Þ=2 the reduced modulus, E ¼
30 GPa [25], ν ¼ 0.17 the Poisson’s ratio [26]. For our
aging contacts, W should be interpreted as a tw-dependent
effective adhesion energy, which integrates all adhesive
forces inside the contact. The precise value of A;¼ 1—
resp. 31=3 ≃ 1.44—in DMT—resp. Johnson-Kendall-
Roberts (JKR) [27]—theories, is irrelevant to our analysis.
Next, rolling requires contact line depinning, a fragile

rupture mechanism. Namely [28], it takes place when
the strain energy release rate during rolling, ΔG, equals
the adhesion hysteresisΔW, i.e., the difference between the
surface creation and opening energies at the leading and
trailing edges (resp.). After calculating ΔG as a function of
the bending level for a JKR contact, Krijt et al. [28] thus
obtain the following yielding criterion:

θyðtwÞ ¼
acðtwÞΔW
6aWðtwÞ

ð4Þ

where we explicitly show all tw dependencies. In Krijt
et al.’s calculation, W appears via the global condition of
zero total force: it corresponds to the WðtwÞ of Eq. (3),
which integrates all age-dependent adhesive contributions
throughout the contact. In contrast, we expect the adhesion
hysteresis ΔW to be tw independent because (i) the closing
energy obviously is; (ii) the opening energy too since
opening occurs at the rim of the growing contact where
sintering has not taken place yet.
In our model, the contact state is set by acðtwÞ, with the

effective adhesion energy WðtwÞ ∼ a3cðtwÞ [Eq. (3)].
Equation (4) then yields θyðtwÞ ∼ 1=a2cðtwÞ, all coefficients
being constant. Since krðtwÞ ∼ a4cðtwÞ [Eq. (2)], we obtain
θyðtwÞ ∼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
krðtwÞ

p
, or MyðtwÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
krðtwÞ

p
, i.e., Eq. (1)

with the prefactor

g ¼ ð3πÞ3=2A3ð1 − ν2ÞΔW
12

ffiffiffiffiffiffi
ΓE

p ffiffiffi
a

p
: ð5Þ

Using A3¼3 (JKR), the measured g≃3.56×10−10N1=2m1=2

corresponds to ΔW ≃ 77 mJ=m2, a fairly reasonable
value [29], which provides compelling support to our
argument.
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For a fixed microstructure, we expect the shear modulus
[5] and yield stress to be proportional to the flexural
stiffness kr and critical moment My respectively. For
dimensional reasons, these relations read

G0ða;ϕ; twÞ ¼
SðϕÞ
a3

× krða; twÞ ð6Þ

σyða;ϕ; twÞ ¼
QðϕÞ
a3

×Myða; twÞ ð7Þ

where S and Q, which characterize the frozen micro-
structure, are independent of time, particle size, and ionic
strength.
Equation (7) offers us an opportunity to test our

theoretical analysis of the contact problem, which predicts
the nontrivial scaling Myða; twÞ ∼W2=3ðtwÞa4=3. This can-
not be done directly using OTs due to the limited range of
accessible particle sizes. But, together with Eq. (7), it
predicts that, for two different radii a and a⋆

σyða;ϕ; twÞ ¼
QðϕÞ
a3

�
a
a⋆
�

4=3
Myða⋆; twÞ ð8Þ

which expresses the macroscopic threshold of suspensions
of arbitrary a as a function of Myða⋆; twÞ.
We have systematically tested this relation against

rheometry data [9]. Like My, σy does not depend on I,
but strongly grows with ϕ over the studied range. A typical
test is presented in Fig. 3(a). Filled symbols represent
σyðtwÞ for ϕ ≃ 0.35 suspensions, at tw ¼ 300, 600, 1200 s,
and for 2a ¼ 0.7, 1.0, and 1.6 μm. As seen, σy increases
with tw and decreases with a. Equation (8) predicts that all
these data points can be reconstructed from our Myða⋆; twÞ
OT data, with 2a⋆ ¼ 1.9 μm [Fig. 2], using a single fitting
parameter Q. This highly constrained fit yields the three
series of open symbols: it works remarkably well, thus
bringing clear support to our analysis.
Combining Eqs. (1), (5), (6), and (7), we now obtain

σyða;ϕ; twÞ ¼ CðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ða;ϕ; twÞ

p
a

ð9Þ

which is a constitutive relation between the macroscopic
shear modulus and yield stress of an aging suspension.
Here, CðϕÞ ¼ ðgðaÞ= ffiffiffi

a
p ÞQðϕÞ= ffiffiffiffiffiffiffiffiffiffi

SðϕÞp
is a function of ϕ

only since g=
ffiffiffi
a

p
only depends on physical properties of the

particles [Eq. (5)]. Equation (9) is tested in Fig. 3(b) where
we plot σy vs

ffiffiffiffiffi
G0p
=a for ϕ ≃ 0.35 and an otherwise broad

range of conditions (2a from 0.7 to 1.6 μm, I from 0.1 to
0.2 M). The agreement is remarkable.
We have successfully tested Eqs. (8) and (9) for various

values of ϕ over the range (from ϕ ≃ 0.3 to 0.4) over
which our suspensions are stable and present a measurable
yield stress [31]. We can thus estimate QðϕÞ and SðϕÞ

independently: the former, by matching Eq. (8) as in
Fig. 3(a) [31]; the latter via a similar analysis of G0 and kr
data [5]. The resulting values of QðϕÞ= ffiffiffiffiffiffiffiffiffiffi

SðϕÞp
, displayed

in Fig. 3(c), do not show any systematic ϕ dependence.
This is quite meaningful, despite the limited accessible
packing fraction range, because the parameters SðϕÞ and
QðϕÞ vary separately by significant factors: S from 1.9 to
47 (a factor of ≃25), and Q from 0.5 to 2.5 (a factor of 5).
To rationalize our observations, let us emphasize that,

since contacts form within seconds of flow arrest, their
relative age differences decrease with time. Moreover,
despite experimental difficulties, our krðtwÞ data [5] show
strikingly moderate sample-to-sample fluctuations. Hence,
in a suspension at rest, beyond a short transient, all contacts
essentially present the same krðtwÞ. Meanwhile, normal
stiffnesses are essentially infinite.
Therefore, when a suspension microstructure responds

elastically, the microscopic nonaffine motions are age
independent: at macroscopic strain γ, for any contact ij,
the flexion angle θij ¼ Aijγ, with Aij constant. In a system
of volume V, the energy density is ð1=2VÞPij krA

2
ijγ

2, the
sum running over all contacts; the elastic modulus
G0 ¼ ðNc=VÞhA2

ijikr, with Nc the number of contacts
and h� � �i the ensemble average. Since the studied phe-
nomenon takes place in a limited packing fraction range,
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FIG. 3. (a) Macroscopic yield stress (filled symbols) of ϕ ≃
0.35 suspensions as measured from rheology stress sweep tests.
Open symbols (in corresponding colors) are the predictions
obtained from Eq. (8) using the single value Q ≃ 0.9 for all
three series of points. (b) Test of the macroscopic constitutive
relation [Eq. (9)]: σy vs

ffiffiffiffiffi
G0p
=a for all ϕ ≃ 0.35 suspensions, with

2a ranging from 0.7 to 1.6 μm and I from 0.1 to 0.2 M. The solid
line is not a fit, but the prediction of Eq. (9) using the ϕ-average
value of Q=

ffiffiffi
S

p
∼ 0.355 from panel (c) and the fitted value of

gða⋆Þ= ffiffiffiffiffi
a⋆

p
. (c) Q=

ffiffiffi
S

p
as a function of ϕ, obtained from

independent fits of Q and S by matching microscopic and
macroscopic data.
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away from jamming, we may write Nc=V ≃ ρ=a3, with ρ a
constant of order a few units, which yields Eq. (6)
with S ¼ ρhA2

iji.
We found above contacts to be brittle, and increasingly

so with age. Yet, suspensions are ductile: their yielding
hence requires that of a measurable fraction of contacts
precipitating a drop in the elastic modulus. Under such

yielding conditions, the rescaled moment
ffiffiffiffiffiffiffiffiffi
hθ2iji

q
=θyðtwÞ ¼

κ should achieve a constant value. Therefore, the yield

strain γy ¼ κθy=
ffiffiffiffiffiffiffiffiffiffi
hA2

iji
q

and σy ¼ G0γy ¼ ð1=a3Þ ffiffiffiffiffiffi
ρS

p
κMy.

We now recover Eq. (7) while predicting Q=
ffiffiffi
S

p ¼ κ
ffiffiffi
ρ

p
to

be a constant, just as shown by our data.
In summary, we have brought compelling evidence that

adhesive colloidal suspensions yield by a mechanism
that depends on interparticle contacts reaching an age-
dependent rolling threshold associated with the depinning
of the contact line, a brittle rupture mechanism. We have
identified a microscopic constitutive relation [Eq. (1)]
relating this threshold to the flexural stiffness and were
able to explain its origin within a model which, although
schematic, is fully consistent with both our previous
interpretation of the origin of flexural rigidity [5] and an
existing estimate of the rolling threshold [28]. This model,
moreover, predicts a nontrivial particle size dependence of
the macroscopic yield stress, which we successfully tested.
This led us to identify a macroscopic constitutive relation

between the yield stress and shear modulus [Eq. (9), with C
a constant], which constitutes a major outcome. It opens
two perspectives of considerable practical interest: identi-
fying nondestructive probes of the age-dependent yield
stress of suspensions, the most important property in many
situations; or controlling the yield stress (and shear modu-
lus) by altering the surface chemistry of particles.
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