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We demonstrate the feasibility of the time-linear scaling formulation of theGW method [Phys. Rev. Lett.
124, 076601 (2020)] for ab initio simulations of optically driven two-dimensional materials. The time-
dependentGW equations are derived and solved numerically in the basis of Bloch states. We address carrier
multiplication and relaxation in photoexcited graphene and find deviations from the typical exponential
behavior predicted by the Markovian Boltzmann approach. For a resonantly pumped semiconductor we
discover a self-sustained screening cascade leading to the Mott transition of coherent excitons. Our results
draw attention to the importance of non-Markovian and dynamical screening effects in out-of-equilibrium
phenomena.
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In the last two decades the GW approximation [1] has
emerged as a successful and popular tool for describing at
microscopic level electronic and optical properties of
quantum matter. The merits of this method arise from
the proper inclusion of dynamical and nonlocal effects,
leading to band structures and absorption spectra in
excellent agreement with experiments in a broad class of
materials [2,3].
The nonequilibrium extension of the GW approximation

would be of utmost importance to address several ultrafast
phenomena; its implementation, however, has been so far
computationally too prohibitive. The real-time GW method
is based on the numerical solution of the Kadanoff-Baym
equations (KBE) for the one-particle Green’s function
(GF). As the method scales cubically with the physical
propagation time [4–6], the GW KBE have only been
solved in model systems [7–11] and confined to very short
timescales [12,13]. The timescaling does not improve with
the generalized Kadanoff-Baym ansatz (GKBA) [14], and
simulations up to few hundreds of femtoseconds have been
restricted to jelliumlike models [15–17].
A significant advance has been recently achieved

with a time-linear scaling formulation of the GW-GKBA
approach [18,19]. The GW-GKBA equations have been
mapped onto a coupled system of ordinary differential
equations (ODE) for the one-particle density matrix and the
equal-time two-particle GF. The ODE scheme (also appli-
cable to second-Born, T matrix [18,19] and other correlated
methods [20,21]) preserves the full non-Markovian nature
of the dynamics, and successful tests in small finite systems
are already available [18,19,21].
In this Letter we extend and solve numerically the GW-

ODE scheme for spatially periodic two-dimensional (2D)
systems, thus opening the way to ab initio real-time GW

simulations in material science. We investigate two
different materials to highlight different aspects of the
GW method. First we reexamine the problem of carrier
multiplication in photoexcited graphene [22–28]. By com-
parison with Boltzmann equation (BE) results, we show
that the (so far neglected) non-Markovian effects modify
considerably the impact ionization dynamics. The second
application concerns with the photogenerated screening in
2D semiconductors. Pumping resonantly with the exciton
energy [29–31], we find that there is a critical exci-
tation density above which the coherent exciton superfluid
melts abruptly (coherent exciton Mott transition) well
before phonon-induced decoherence takes places [32].
This is due to a self-sustained screening cascade, a
phenomenon that can be captured only if the screened
electron-hole (e-h) attraction is properly updated during the
evolution.
Real-time GW formalism.—We consider a periodic

system with Nb bands and denote by Vqkk0
lnmi the scattering

amplitude for two electrons in bands m and i with
quasimomenta k0 þ q and k − q to end up in the bands
n and l with quasimomenta k0 and k respectively, see
Fig. 1(a). Let us introduce the spin-symmetric lesser and
greater GFs G<

kijðt;t0Þ¼ihc†kjσðt0ÞckiσðtÞi and G>
kijðt;t0Þ¼

−ihckiσðtÞc†kjσðt0Þi, where ĉð†Þkiσ annihilates (creates) an
electron with quasimomentum k and spin σ in band i.
The inclusion of spin-orbit and the generalization to spin-
dependent GFs is straightforward. The goal of this work is
to study the temporal evolution of the one-particle density
matrix ρkijðtÞ≡ −iG<

kijðt; tÞ in the GW approximation. By
defining Σkðt; t0Þ as the GW self-energy, see Fig. 1(b), the
equation of motion to solve is
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dρkðtÞ
dt

¼ −i½hkðtÞ; ρkðtÞ� − IkðtÞ − I†kðtÞ; ð1Þ

IkðtÞ ¼
Z

dt0½Σ>
k ðt; t0ÞG<

k ðt0; tÞ − Σ<
kðt; t0ÞG>

kðt0; tÞ�; ð2Þ

where all quantities are Nb × Nb matrices in the band
indices. The time-dependent single-particle Hamiltonian
reads [33]

hkijðtÞ ¼ δijϵki þ PkijðtÞ
þ

X
k0mn

ð2V0kk0
imnj − Vðk−k0Þkk0

imjn Þδρk0nmðtÞ; ð3Þ

where the ϵki are the band dispersions of a preliminary
equilibrium GW calculation whereas PkijðtÞ describes the
coupling of the electrons to an external field. The last term
in Eq. (3) is the variation of the Hartree-Fock potential due
to the variation (δρ) of the density matrix with respect to the
equilibrium value ρeqknm ¼ δnmfðϵknÞ, with f the zero-
temperature Fermi-Dirac distribution.
We implement the GKBA [14] to obtain a closed equ-

ation for ρ, i.e., we express the lesser and greater GFs as
G≶

kðt; t0Þ ¼ −GR
kðt; t0Þρ≶kðt0Þ þ ρ≶kðtÞGA

kðt; t0Þ, where we
have defined ρ<k ¼ ρk and ρ>k ¼ ρk − 1. The retarded
and advanced propagators are approximated at the quasi-

particle level, hence GR
kðt; t0Þ ¼ −iθðt − t0ÞTfe−i

R
t

t0 dt̄hkðt̄Þg
(T being the time-ordering operator) and GA

kðt; t0Þ ¼
½GR

kðt0; tÞ�†. The bottleneck in solving Eq. (1) is the

numerical evaluation of the GW self-energy Σ≷
kijðt; t0Þ ¼

i
P

qmn W
≷qkðk−qÞ
imjn ðt; t0ÞG≷

k−qnmðt; t0Þ since the screened
interaction Wðt; t0Þ obeys the random phase approximation
integral equation for every t and t0, making the overall
numerical scaling cubic in the propagation time.

Remarkably, however, such scaling can been reduced from
cubic to linear through the simultaneous propagation of the
two-particle GF G [18,19].
The collision integral IðtÞ in Eq. (2), see also Fig. 1(c),

can equivalently be written in terms of G as illustrated in
Fig. 1(d):

IkljðtÞ ¼ −i
X
k̄q
imn

Gkk̄q
in
jm

ðtÞVð−qÞk̄k
ni
ml

; ð4Þ

where Gkk0q
lm
in

≡ Gkk0q
lnim and Vqkk0

lm
in

≡ Vqkk0
lnmi are matrices (two-

index tensors) in the space of pairs of band indices [34].
Henceforth we use boldface letters to denote matrices in
this space. Introducing also the matrices h

kk0 lm
in
ðtÞ≡

hklmðtÞδin − hk0niðtÞδlm and ρ≶
kk0 lm

in

ðtÞ≡ ρ≶klmðtÞρ≷k0niðtÞ
we obtain a compact equation of motion for the two-
particle GF [34]:

i
d
dt

Gkk̄qðtÞ ¼ −2½ρ>ðk−qÞkðtÞVqðk−qÞðk̄þqÞρ<k̄ðk̄þqÞðtÞ − ρ<ðk−qÞkðtÞVqðk−qÞðk̄þqÞρ>k̄ðk̄þqÞðtÞ�
þ hðk−qÞkðtÞGkk̄qðtÞ − Gkk̄qðtÞhk̄ðk̄þqÞðtÞ
þ 2

X
k0

½Gkk0qðtÞVð−qÞk0ðk̄þqÞρΔk̄ðk̄þqÞðtÞ − ρΔðk̄−qÞkðtÞVð−qÞðk−qÞk0
Gk0k̄qðtÞ�≡ Ikk̄qðtÞ: ð5Þ

In Eq. (5) ρΔkk0 ≡ ρ>kk0 − ρ<kk0 and matrix multiplication
betweenN2

b × N2
b matrices is understood. The second-Born

(2B) approximation without the second-order exchange
contribution is recovered by neglecting the last line of

Eq. (5). If we instead set Nb ¼ 1 and choose Vqkk0
1111 ¼ Vq

depending only on the transferred momentum q, we
recover the GW ODE for jellium [18,19].
Equations (1), (4), (5) form a closed system of first-order

ODE that is equivalent to the original GW-GKBA scheme.
Notice that in the GW-ODE scheme the GW self-energy

Σðt; t0Þ is never evaluated. The collision integral IðtÞ
depends only on the instantaneous GðtÞ, ρðtÞ, and hðtÞ.
The numerical scaling is linear in time, quartic in the
number of k points Nk and sextic in the number of bands
Nb. The scaling with Nk can be reduced from quartic to
cubic by working in localized bases, e.g., Wannier orbitals.
In these bases the Coulomb tensor is well approxi-
mated by a sum of factorized contributions, Vqkk0

lnmi≈P
αβ v

αβðqÞFα
liðk;qÞFβ

nmðk0;qÞ, where α and β run over
the number of (typically few) localized orbitals in the unit

FIG. 1. Diagrammatic representation of the Coulomb scattering
amplitude (a), GW self-energy (b) and collision integral in terms
of the self-energy (c), and two-particle GF (d).
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cell. With such factorization the contraction over k0 in
Eq. (5) can be executed only once for all k̄, thus lowering
the Nk scaling by one power and making ab initio real-time
GW simulations affordable, as it has been demonstrated for
BE-based methods in Refs. [35,36].
We have implemented the GW-ODE scheme in 2D

systems having a single valence (i ¼ 1) and a single
conduction (i ¼ 2) band (hence Nb ¼ 2). Accordingly,
the equilibrium one-particle density matrix ρeqk11 ¼ 1,
ρeqk22 ¼ 0, and ρeqk12 ¼ 0. We use ρkð0Þ ¼ ρeqk as initial
condition. To avoid double countings we also subtract from
the right-hand side of Eq. (5) the contribution of initial
correlations, already taken into account in the dressing of
the GW band structures ϵki. Hence we modify the equation
of motion for G according to iðd=dtÞGkk̄qðtÞ ¼ Ikk̄qðtÞ −
Ikk̄qð0Þ and set Gkk̄qð0Þ ¼ 0. Although the equilibrium
state is weakly correlated, the electron-electron interaction
plays a crucial role in the photoexcited dynamics, see
below. We solve numerically the GW-ODE equations for
the GW and 2B approximations using the CHEERS code
[37]. We also provide comparisons with results from the
BE, i.e., the semiconductor Bloch equation [38] in the 2B-
Markov approximation [34]. For the numerical simulations
we use polar coordinates (centered in the minimum of the
optically activated valleys) k ¼ ðk; θÞ, where the modulus
k (angle θ) varies on a uniform grid of Nk (Nθ) points
between 0 and kmax (2π). The linear-time propagation is
performed using the fourth-order Runge-Kutta solver.
Carrier multiplication in photoexcited graphene.—Due

to its semimetallic nature pristine graphene has scarce
screening efficiency [39,40]. Moreover in Ref. [41] it has
been shown that second-order exchange effects are negli-
gible. We therefore expect that 2B and GW calculations
give similar results and that the comparison between GW
and BE well highlights the role of non-Markovian effects.
Previous studies have shown that immediately after the

photoexcitation, the electron dynamics is dominated by the
impact ionization [22,25,42–45]. This interband process
promotes electrons from the valence to the conduction band
at the expense of energy loss by photoexcited hot carriers.
Due to the linearity of the Dirac spectrum, carrier multi-
plication can occur mainly via collinear scattering [44].
These scatterings, however, have a vanishingly small phase
space (and therefore become irrelevant) if the energy of the
quasiparticles is exactly conserved [44]. In the BE approach
an empirical energy-broadening η [34] is therefore intro-
duced to capture the effect.
For photoexcitations with photon energy ≲3 eV

graphene is well described by the Dirac cone appro-
ximation [46], where conduction and valence bands
have linear dispersion ϵk1;2 ¼ �vFk, with vF the Fermi
velocity and k ¼ jkj a small momentum around the
KðK0Þ point of the first Brillouin zone. In this case
the Coulomb integral has a simple expression [46]

Vqkk0
lnmi ¼ ð2π=εqÞFilðθk−q − θkÞFmnðθk0þq − θk0 Þ, where

FmnðθÞ ¼ f½1þ ð−1Þmþneiθ�=2g, with θk the polar angle
of the momentum k. We take a dielectric constant
ε ≈ 2.5, originating from a typical insulating substrate like
SiO2 [47].
We consider graphene initially in the ground state and

then driven out of equilibrium by a pump field linearly
polarized along a direction e on the plane. The expli-
cit form of the light-matter interaction term is [48]
PkijðtÞ ¼ δi1δj2MEðtÞ½ðkxey − kyexÞ=k�, where EðtÞ¼
θð1− j1−2t=TPjÞEsin2ðπt=TPÞsinðωPtÞ is the pump enve-
lope with duration TP ¼ 20 fs and frequencyωP ¼ 1.5 eV;
the Rabi frequency M is varied in order to promote
excitation densities in the range 1010–1012 carriers=cm2.
To improve convergence we have regularized the bare
interaction 1=q → 1=ðqþ qcÞ; in the simulations qc ¼
0.01 Å−1 is a small cutoff that can be understood as the
Thomas-Fermi momentum ascribed to a small uninten-
tional doping [49]. For a given valley (K or K0) we have
used Nk ¼ 16, Nθ ¼ 24, and kmax ¼ 0.2 Å−1. The real-
time simulations have been performed with a time step
Δt ¼ 0.2 fs up to 150 fs; at times ≳200 fs intervalley
scattering and electron-phonon interactions (which are
neglected in our calculations) become relevant [43,44]
and our results become less accurate. In Fig. 2(a) we show
the evolution of the carrier density in the conduction band
nðtÞ ¼ ð4=AÞPk ρk22ðtÞ during and after the illumination,
for different pump intensities. The factor 4 accounts for the
spin and valley degeneracy while A ¼ 5.1 × 10−16 cm2 is
the unit-cell area of graphene. In order to illustrate the
carrier multiplication effect as a function of the pump
intensity we plot nðtÞ=nP, where nP ≡ nðTPÞ is the excited
density at the end of the pump. The GW simulation
confirms the predicted behavior of a decrease in the rate

(b)(a)

FIG. 2. (a) Time-dependent normalized carrier density nðtÞ=nP
in photoexcited graphene in the GW approximation for different
pump intensities. (b) Carrier density nðtÞ (in units of cm−2) in the
GW and BE approach for different values of the broadening η; in
all simulations we use the same pump intensity, giving nP ¼
8 × 1011 cm−2 in the GW case.

PHYSICAL REVIEW LETTERS 128, 016801 (2022)

016801-3



of carrier multiplication with increasing the carrier density
[22]. This is due to the Pauli blocking effect that reduces the
phase space for impact ionization. Notice that no param-
eters (like η in the BE approach) appear in the GW-ODE
scheme.
In Fig. 2(b) we compare the GW result to the BE

outcome for different values of the broadening η. In all
simulations we use the same pump intensity, giving nP ¼
8 × 1011 cm−2 in the GW case. In the BE approach the
carrier multiplication depends strongly on the chosen
broadening. During illumination, energy is not conserved
and therefore the smaller η is the less accurate description
of the early transient dynamics. This explains why the BE
curve obtained with the large value η ¼ 0.1 eV is the
closest to GW. At larger times t≳ 60 fs, however, the two
curves depart from each other. In particular the GW
evolution does not follow (at least within this temporal
window) the typical exponential saturation behavior of the
BE, characterized by a downward concavity for t > TP.
This qualitative difference is due to non-Markovian effects
as in this case the 2B results (see the Supplemental Material
[34]) are very close to the GW ones.
In Fig. 3 we compare the evolution of the momentum-

resolved occupations fkðtÞ ¼ ρk22ðtÞ in different
approaches. We clearly see that the carrier population is
initially highly anisotropic due to the liner polarization of
the pulse [43]. As already observed GW agrees well with
BE for η ¼ 0.1 eV up to time t ≈ 60 fs, i.e., when the
distribution is still anisotropic. At this time a substantial
portion of the initial hot electrons have already migrated
towards the Dirac point due to interparticle scattering. At
larger times GW predicts a rapid thermalization while in
BE the same process is much slower. The BE results are
strongly affected by the value of η. At smaller η ¼ 5 meV
the thermalization is very fast: there is a sizable charge

redistribution already during illumination, and at t ≈ 60 fs
the distribution is essentially isotropic.
Coherent excitons in semiconductors.—A crucial feature

of the real-time GW method is the updating of the screened
interaction during the time evolution. We highlight this
effect in a prototype 2D semiconductor hosting bound
excitons inside the gap, and study the dynamics activated
by pumping in resonance with the lowest excitonic energy.
Resonant pumping creates a fluid of coherent excitons [50],
characterized by long-lived monochromatic oscillations of
the macroscopic polarization [51–57]. We here address the
relaxation dynamics of the macroscopic polarization due to
excited state screening. Let us model a direct-gap 2D
semiconductor with band dispersions ϵk1;2 ¼ �ϵg=2�
k2=2m, where ϵg is the band gap and m the effective mass
of electrons and holes. In semiconductors the Coulomb
integrals that do not conserve the particle number in each
band are typically small [58] and can be neglected. In
addition we assume a dependence only on the transferred
momentum, i.e., Vqk1k2

lnmi ¼ Vqδliδnm, and take the standard
2D interaction Vq ¼ 2π=ϵðqþ qcÞ, where ε accounts for
the dielectric screening of the surrounding environment.
Typical values to describe optical excitation in a monolayer
transition metal dichalcogenide around the K valley are
ϵg ¼ 2 eV, m ¼ 0.5me (me being the electron mass) and
ε ¼ 10 (e.g., sapphire substrate). By solving the Bethe-
Salpeter equation at equilibrium with these parameters we
find the lowest energy exciton at ϵx ≈ 1.9 eV (i.e., binding
energy of 0.1 eV). Real-time simulations have been
performed usingNk ¼ 32,Nθ ¼ 32. We adopted a momen-
tum cutoff kmax ¼ 0.3 Å−1 for excitation densities nP≲
5×1011 cm−2 while kmax¼0.5Å−1 for nP ≳ 5 × 1011 cm−2,
time step Δt ¼ 0.025 fs.
The system is excited with a laser pulse having the same

envelope EðtÞ used for graphene but with a resonant
frequency ωP ¼ ϵx ¼ 1.9 eV and duration TP ¼ 25 fs.
For simplicity we assume an isotropic excitation with
momentum-independent light-matter interaction PkijðtÞ ¼
δi1δj2MEðtÞ. Accordingly the density matrix and all
observables depend only on the modulus k. Also in this
case the Rabi frequency is varied in order to promote
excitation densities in the range 1010–1012 carriers=cm2. In
Fig. 4(a) we show the evolution of the momentum-resolved
carrier distribution fkðtÞ ¼ ρk22ðtÞ for a low excited density
nP ¼ ð4=AÞPk ρk22ðTPÞ ¼ 1011 cm−2—the characteristic
value A ¼ 9 × 10−16 cm2 has been used. During pumping
excitons are predominantly created and fk ∝ jYkj2, where
Yk is the exciton wave function [30,31,57,59,60]. We have
recently shown that for small excited densities the coherent
exciton superfluid is not able to screen the Coulomb inter-
action [61]. As a consequence the e-h attraction is not
reduced and excitons survive for long time. The superfluid
phase is characterized by a macroscopic polarization
pðtÞ ¼ P

k ρk12ðtÞ that oscillates monochromatically at

FIG. 3. Snaphots of the carrier distribution function fk in
photoexcited graphene in GW (first row), BE for η ¼ 100 meV
(second row) and BE η ¼ 5 meV (third row). Here the pump field
is polarized along the x axis. Momenta kx and ky are in Å−1.
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the exciton frequency ϵx [57], see the blue curve in
Fig. 4(a). In this regime no relaxation occurs, and the
carrier occupations fkðtÞ slowly attain the values reached at
the end of the pump. The system thermalizes only at later
times via electron-phonon scattering [62] (not considered in
the present work).
The scenario changes dramatically at higher excited de-

nsities. In Fig. 4(b) we see that for nP ¼ 4 × 1011 cm−2 the
polarization damps in about 100 fs, and after few femto-
seconds (t≳ 150 fs) the occupations fk reach steady-state
values describing a Fermi-Dirac distribution at temperature
∼2000 K (not shown), consistently with recent data [63].
We have systematically studied the lifetime of the polari-
zation pðtÞ by varying the excitation density. In Fig. 4(c)
we plot the inverse of the time τ needed to reduce the
amplitude of pðtÞ by one order of magnitude, as function of
the carrier density nP. No damping of the polarization can
be detected for nP ≲ 1011 cm−2, while τ−1 grows very fast
beyond this threshold. The mechanism behind the
described behavior is a screening cascade: (1) at suffi-
ciently high excitation density the screening of the exci-
tonic superfluid is nonvanishing and the effective e-h
attraction is reduced, (2) excitons start dissociating in a
plasma of quasifree electrons in conduction band and
quasifree holes in valence band, and (3) the e-h plasma
has a high screening efficiency and the e-h attraction gets
drastically reduced [60]. This self-sustained mechanism
leads to a rapid melting of the superfluid state, signaled by a
decay of the polarization. The thermalization occurs via
scattering between incoherent quasiparticles, and the occu-
pations fkðtÞ relax towards a hot Fermi-Dirac distribution.
We emphasize that this coherent exciton Mott transition is
different from the well-known excitonic Mott transition
[64–67], which refers to the breakdown of a system of
incoherent excitons [68].

In conclusion we have demonstrated the feasibility of
real-time GW simulations in 2D materials via the gener-
alization and practical implementation of the recently
proposed GW-ODE scheme [18,19]. The GW approxima-
tion gives easy access to so far neglected effects that we
have shown to be crucial for the photoexcited many-
electrons dynamics in graphene and 2D semiconductors.
Although the method presented in this work applies
exclusively to electronic processes, electron-phonon scat-
terings can be included without affecting the linear-time
scaling [20]. This opens new avenues for the ab initio
description and understanding of ultrafast phenomena
observed in time-resolved experiments.
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