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We propose an experiment to identify the topological order of the ν ¼ 5
2
state through a measurement of

the electric conductance of a mesoscopic device. Our setup is based on interfacing ν ¼ 2; 5
2
, and 3 in the

same device. Its conductance can unambiguously establish or rule out the particle-hole symmetric Pfaffian
topological order, which is supported by recent thermal measurements. Additionally, it distinguishes
between the Moore-Read and anti-Pfaffian topological orders, which are favored by numerical calculations.
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Introduction.—Fractional quantum Hall states [1–4]
comprise many fascinating aspects of quantum many-body
physics in an experimentally available platform. These
features include topological order, which is reflected in
fractional quantum numbers and statistics, and topologi-
cally protected edge states [5]. The latter leads to robust
experimental signatures such as a perfectly quantized
electronic Hall conductance. A special group among the
plethora of fractional quantum Hall states are those that
exhibit highly prized non-Abelian statistics [6–9]. The
strongest numerical evidence of such a phase arises at
the filling factor ν ¼ 5

2
[10–17]. The nature of this phase

remains hotly debated; the leading candidates based on
numerical simulations are the celebratedMoore-Read (MR)
Pfaffian [8] and its particle-hole (PH) conjugate, known as
anti-Pfaffian (APf) [18,19].
The experimental distinction between different ν ¼ 5

2
states is challenging due to the similarity of their edge
structures: they feature the same charged modes and differ
only in the number of Majorana modes. The parity of
that number may be observed by interference measurements

]20–22 ]. Quasiparticle tunneling has been proposed to
identify the topological order via its scaling with temperature
T or gate voltage. However, experimentally determined
exponents disagree with theoretical predictions, even for
Abelian states [23–25]. These deviations may arise due to
Coulomb interactions, details of the edge, or sample geom-
etry [26–30]. Alternatively, thermal Hall conductance enc-
odes a topological invariant that identifies the state.
Reference [31] measured the two-terminal thermal conduct-
ance to be κ ≈ 5

2
, in units of π2k2BT=3h. By contrast, the

quantized values for MR and APf are 7
2
and 3

2
. The measured

value matches theoretical expectations for the PH-Pfaffian
(PHPf) phase [32], which is PH invariant [33] but faces
theoretical challenges [35,36]. It has never been observed
numerically, and its trial states become critical upon projec-
tion into a single Landau level [37–40]. Subsequent theo-
retical works argued that incomplete APf edge equilibration

might also realize themeasured value [41–46], and shot-noise
scaling was proposed to resolve this ambiguity [47].
Recent thermal noise measurements have strengthened the

case for PHPf [48]. These experiments interfaced ν ¼ 5
2
states

with ν ¼ 3 to realize the PH conjugate of the standard edge
between ν ¼ 5

2
and ν ¼ 2. Observing noise in both cases

suggests that both “direct” and PH conjugate edges contain
counterpropagating modes, which is the case only for PHPf.
Here, we show that devices that simultaneously contain

interfaces of ν ¼ 5
2
with ν ¼ 2 and ν ¼ 3 can provide critical

information about the topological order at ν ¼ 5
2
. Their

electric conductances take different universal values depend-
ing on whether the edge with ν ¼ 2 or with ν ¼ 3 is chiral,
i.e., carries only copropagating modes. The former includes
the MR state, the latter the APf. Among the candidate
topological orders, only PHPf features achiral edges with
both ν ¼ 2, 3 and can therefore be identified uniquely.
In the setup of Fig. 1, one electron mode emanates from

the source S and enters the drain D1. Consequently, the

(a) (b)

(d)(c)

FIG. 1. Our setup exemplified for the PHPf topological order.
The ν ¼ 5

2
region is interfaced with ν ¼ 2 and ν ¼ 3. The

positions of the integer states are interchanged between (a)
and (b). Tunneling renormalizes the density-density interactions
between electron (black) and semion (blue) modes to a fixed
point with decoupled charge and neutral (red) modes (c). The
neutral mode is partially compensated by the Majorana mode,
leading to the same minimal edge structure in both cases (d).
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conductance G must lie between zero and one in units of
e2=h (charge conservation implies that the conductance
between S and D2 is 1 −G). If it were solely determined
by the bulk filling factors, the valueG ¼ 1

2
would arise. We

find that the conductance at T ¼ 0 can be either G ¼ 1
2
or

G ¼ 1, and is dictated by the chirality of the neutral
modes. Remarkably, it is insensitive to substantial devia-
tions of tunneling exponents from their theoretically
expected values. For the filling factors as in Fig. 1(a),
we predict complete transmission G ¼ 1 for MR but G ¼ 1

2

for PHPf and APf; in the PH-conjugate setup of Fig. 1(b),
we expect full transmission for APf and G ¼ 1

2
for

both MR and PHPf. Thus, two charge measurements on
the same device can distinguish between the three
candidates.
Quantum Hall states in the half-filled first excited

Landau level.—The different electronic Hall conductances
of the ν ¼ 5

2
and ν ¼ 2 states require a specific chiral charge

mode at their interface. In addition, there are nM
neutral chiral Majorana modes γi that depend on the
topological phase. The edge Lagrangian density reads
Ledge ¼ L0 þ δL with

L0 ¼
sgnðvÞ
2π

∂xφ½∂t − v∂x�φþ i
XnM

l¼1

γl½∂t − vl∂x�γl; ð1Þ

where s ∝ eiφ annihilates a charge-e=2 semion. For the
MR state nM ¼ 1, and the charge- and neutral-mode
velocities v; v1 have equal signs. Their signs are opposite
for PHPf, which has nM ¼ 1, and APf with nM ¼ 3. The
edge theory L0 admits interactions between charge and
neutral modes, e.g., δL1 ∝ ∂xφγiγj or δL2 ∝ ∂xφγj∂xγj.
The scaling dimensions ½γ� ¼ 1

2
, ½s� ¼ 1

4
, and ½φ� ¼ 0

imply that δL1 is marginal and δL2 is irrelevant in the
RG sense. The former may change the edge conductance,
while the latter does not affect macroscopic observ-
ables [49].
For our analysis, we also need the field theory of the

particle-hole-conjugate edge. It is obtained by adding to
Ledge a chiral mode of electrons ψ† ∼ eiϕ described by

Le ¼
sgnðveÞ

4π
∂xϕ½∂t − ve∂x�ϕ; ð2Þ

with chirality opposite to the semion mode φ. The two
edge theories Le;Ledge couple via density-density
interactions Lint ¼ 2h∂xϕ∂xφ and electron tunneling
Ltun ∝ i

P
j λjγjψ

†s2. The amplitudes λj generically con-
tain x-dependent phase factors, which cause destructive
interference. Impurities result in randomly varying λjðxÞ,
destroy this interference, and facilitate tunneling between
different edge modes [51–56]. Random tunneling is

relevant when the scaling dimension of γjψ†s2 is smaller
than 3=2. For h ¼ 0, we have ½γjψ†s2�h¼0 ¼ 2 and tunnel-

ing is irrelevant; it becomes relevant for h > hc ≡ ½ð6 −ffiffiffi
6

p Þ=12�ðvþ veÞ [18,19].
To analyze the latter case, we introduce new semions

s̃ ¼ ψs† and neutral fermions ψ†
n ¼ ψ†s2. These

modes counterpropagate, with the chirality of s̃ opposite
to that of s. The Gaussian terms in the composite-edge
action comprise kinetic terms for s̃† ∝ eiφ̃;ψ†

n ∝ eiϕn,
and a coupling analogous to Lint, which vanishes when
h ¼ h� ≡ 2

3
ðvþ veÞ [18,19]. The tunneling for nonzero nM

takes the form

Ltun ¼ i
XnM

l¼1

λlðxÞγlψn þ λ�l ðxÞγlψ†
n: ð3Þ

When ψn, which comprises two Majoranas, and γl have
opposite chirality, pairs of counterpropagating Majoranas
“compensate” each other: they become localized at a scale ξ
and do not affect the physics at longer wavelengths [57].
The remaining j2 − nMj (opposite signs of v; v1) or 2þ nM
(equal signs) Majoranas enjoy topological protection. They
may interact with the charge mode φ̃ through terms such as
δL1;2. However, such couplings become irrelevant at a
random edge [18,19]. Consequently, charge and neutral
sectors decouple in all cases pertinent here.
PH-Pfaffian.—We begin with PHPf in the setup of

Fig. 1. This topological order is unique in having the same
minimal edge structures when interfaced with ν ¼ 2 and
ν ¼ 3, up to a global chirality reversal. This property
follows from Eq. (3), which localizes a pair of counter-
propagating Majoranas and leaves behind an unpaired one
propagating oppositely to s̃, see Figs. 1(c) and 1(d).
In Fig. 1(a), the PHPf island is immersed in a ν ¼ 2

region adjacent to a ν ¼ 3 region. We consider the case
where D1, D2, D3 are grounded, while the source is at a
potential V. The conductance measurement is then a
scattering experiment, with an electron emanating from
the source as the incoming state. Outgoing states must carry
the electron charge either as an electron going to D1 or two
semions flowing to D2. In the latter case, a Majorana
fermion must enter D3 to conserve fermion parity. We use
the currents at S, D1, D2, D3 as boundary conditions
for the segment between xR=L to calculate the conductance.
The current emanating from S propagates unimpeded to xL
and is carried by electrons. As such, it is ISe ¼ ∂tϕðxLÞ=2π.
Similarly, the current that enters D1 is ID1

e ¼ ∂tϕðxRÞ=2π.
The currents from D3 and into D2 are given by
ID2;D3
qp ¼ −∂tφðxL;RÞ=2π.
In the middle region, the charge mode s̃ and neutral

mode ψn decouple. The corresponding charge current is
Ic ≡ ∂tφ̃=2π, and the neutral current is In ≡ −∂tϕn=2π.
The boundary conditions are thus
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IcðxLÞ ¼ ISe − ID2
qp ; InðxLÞ ¼ ISe − 2ID2

qp ;

IcðxRÞ ¼ ID1
e − ID3

qp ; InðxRÞ ¼ ID1
e − 2ID3

qp :
ð4Þ

Charge conservation implies IcðxRÞ ¼ IcðxLÞ, but the
neutral current is sensitive to interactions at the interface.
In the absence of the tunneling term Ltun, InðxLÞ ¼ InðxRÞ,
thus, any current emanating from S flows into D1.
By contrast, when tunneling localizes one of the
Majorana modes, InðxLÞ vanishes exponentially with
jxL − xRj=ξ. A neutral fermion at xR has an equal prob-
ability for arriving at xL as a particle or hole [58].
Consequently, the source current splits equally between
D1 and D2 such that G ¼ 1

2
[59–61].

One may worry that local processes that couple the
neutral and charge modes lead to InðxLÞ ≠ 0 and modify
the conductance. The most dangerous coupling is an
interaction between charge and neutral modes of the form
∂xφ̃e2iϕn þ H:c: It is, however, irrelevant and does not
affect the conductance at low voltages.
The relation between the minimal edge structures of

ν ¼ 2, 3 interfaced with PHPf implies that the same result
holds for the PH-conjugate setup of Fig. 1(b). It is
instructive to analyze this setup starting from the limit
where the original edge modes are decoupled. Then, all the
current that emanates from S enters D2 and G ¼ 0. When
the edges couple through density-density interactions only,
the eigenmodes between xL;R and D2, D3 are h-dependent
linear combinations of the counterpropagating electron and
semion modes. There is a flow of current from S to D1,
with an h-dependent nonuniversal conductance [62]. For
h ¼ h�, the eigenmodes are the charge and neutral modes,
and G ¼ 1=2. Strong tunneling localizes one of two
Majorana fermions comprising ψn. It thereby prohibits
marginal couplings between charge and neutral sectors,
enforcing a universal conductance G ¼ 1=2.
Moore-Read and anti-Pfaffian.—We turn to a MR state

in the configuration of Fig. 2(a). Its interface with ν ¼ 3 is
described by Eqs. (1)–(3). Crucially, the neutral fermions
ψn and γ copropagate and cannot become localized
by Eq. (3). Instead, this term renormalizes h to h�,
thus decoupling charge and neutral modes [18,19]. We
compute the conductance using Eq. (4). Without tunneling,

InðxLÞ ¼ InðxRÞ and G ¼ 1. When tunneling is allowed, a
neutral fermion at xR has a nonzero bare amplitude for
arriving at xL as a hole. At voltages beyond a scale
∝ jxL − xRj−1 this leads to a nonuniversal differential
conductance. At low voltages, the bare amplitude is
renormalized toward a fixed-point value.
Low-energy modes experience the interface region as

effectively pointlike. To identify fixed points and find the
nearby flow, we replace the interface with boundary
conditions for the lead variables at xR;L. The trivial fixed
point without tunneling is encoded by ψnðxLÞ ¼ ψnðxRÞ
and exhibits G ¼ 1 [56,59–61]. The opposite limit
corresponds to ψnðxLÞ ¼ ψ†

nðxRÞ. Here, Eq. (4) with
InðxLÞ ¼ −InðxRÞ yields G ¼ 1

3
(see also [62]).

Analogous fixed points were found in the context of
ν ¼ 2=3 in Ref. [56]. Their stability is determined by
the most prominent local perturbation, the tunneling term
Ltun, now acting at one point xL ≈ xR. At the trivial fixed
point, the neutral fermion is expressible in terms of
incoming modes via ψn ¼ s2ðxRÞψ†ðxLÞ. As such, its
scaling dimension is ½ψn� ¼ 3=2, while ½γ� ¼ 1=2 as before.
Consequently, this perturbation is irrelevant, and the G ¼ 1
fixed point is attractive. Its stability also follows directly
from the electron scaling dimension at an isolated fractional
edge, which is ½s2γ� ¼ 3=2 according to Eq. (1). However,
stability only requires ½s2γ� > 1=2, such that our results are
robust to significant deviations from the theoretical value
(see also [62]). At the nontrivial fixed point, the neutral
fermion satisfies ψ†3

n ¼ s2ðxRÞψ†ðxLÞ and thus ½ψn� ¼ 1=6.
Here, the perturbation is relevant, and the fixed point is
repulsive [62]. Consequently, the conductance is generi-
cally determined by the trivial fixed point with G ¼ 1.
The analysis of the MR state in the geometry of

Fig. 2(b) mirrors that of the PHPf. Without interedge
coupling G ¼ 0, while density-density interactions without
tunneling lead to a nonuniversal h-dependent conductance.
Strong tunneling results in h ¼ h� [18,19], for which
G ¼ 1=2. Local perturbations near xL are irrelevant and
do not modify the conductance at low voltage.
The properties of the APf phase follow from a global

PH-conjugation ν ¼ 3 ↔ ν ¼ 2. Consequently, G ¼ 1
2
in

the geometry of Fig. 2(a) and G ¼ 1 for Fig. 2(b).
Island geometry.—As an alternative to the geometries of

Figs. 1 and 2 one may consider a ν ¼ 5
2
island of size

Lx × Ly “floating” on a ν ¼ 2, 3 background, see Fig. 3 and
Refs. [56,63]. Here, the source and the drain are connected
only to integer modes. For sufficiently low energies, the
fractional island acts as a local scatterer with transmission
T ðωÞ and reflection RðωÞ probabilities that depend on the
incident electron energy. When the island is large compared
to microscopic length scales, the bare probability ampli-
tudes are renormalized. On general grounds, we expect the
existence of trivial fixed points with T ¼ 1 andR ¼ 1, see
Fig. 3. Since the leads contain only integer modes, they do

(a) (b)

FIG. 2. The same setup as in Fig. 1 for the MR topological
order. (a) The tunneling between electron mode and MR edge is
irrelevant, leading to total transmission, i.e., G ¼ 1 at T ¼ 0
(b) Tunneling drives the edge connected to D2, D3 to a fixed
point with decoupled charge and neutral modes and G ¼ 1

2
.
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not cause renormalization, and the island’s dimensions cut
off the RG flow.
When examining the stability of both fixed points, we

find that for the MR and APf states, one is stable, while the
other is unstable. By contrast, both are unstable for the
PHPf, necessitating the existence of an additional, non-
trivial fixed point. The qualitative behavior near the trivial
fixed points is straightforward: for weak tunneling along
the horizontal path, the island exhibits discrete energy
levels with splitting ΔE ∝ ½1=ðLx þ LyÞ�. Transmission
past the island is nearly perfect unless the energy of the
scattering electron matches one of these levels. The
conductance exhibits sharp dips at those energies, which
broaden as the integer modes hybridize with the island. In
the opposite limit, there is near-perfect reflection, and the
conductance is low apart from sharp resonance peaks. For a
particular topological phase of the island, the renormaliza-
tion of tunneling determines which limit is realized.
Consider first a MR island. Near the T ¼ 1 fixed point,

Fig. 3(a), Ltun contains only copropagating modes. The
horizontal edge is characterized by decoupled charge and
neutral modes. This segment is governed by a stable fixed
point where no charge transfers between the electron and
semion modes. For Lx ≪ Ly, renormalization due to the
vertical edges is effective, and the resonances sharpen at
low incident energies. The transmission is thus close to
unity at generic energies. When Ly ≪ Lx, renormalization
is inefficient, and deviations from complete transmission
are significant. The T ¼ 1 fixed point is thus (marginally)
stable.

In contrast, at theR ¼ 1 fixed point, Fig. 3(b), the island
decouples from the ν ¼ 2 region. Tunneling described by
Eq. (3) is strongly relevant, and two pairs of Majorana
modes localize at the scale ξ. Thus, the decoupling becomes
unstable if Ly ≳ ξ and the transmission resonances broaden
at low incident energies. For APf, the two cases are
reversed, and R ¼ 1 is marginally stable.
For PHPf, we again start near the fixed point T ¼ 1.

Similar to the MR case, tunneling is strongly relevant.
It leads to the localization of a pair of Majorana modes at
the length ξ ≪ Lx, which destroys the fully transmitting
fixed point. The same reasoning also holds nearR ¼ 1, i.e.,
both trivial fixed points are unstable. Therefore, when
Lx; Ly ≫ ξ, the transport must be governed by an inter-
mediate, stable fixed point. Since the details of the island
drop out in this limit, we expect this fixed point to exhibit
the universal conductance G ¼ 1=2 and no resonances.
Nonzero temperatures.—Up to this point, our analysis

assumed T ¼ 0, where all transport is fully coherent. At
low temperatures, the results still hold with power-law
corrections governed by the leading irrelevant operators at
the respective fixed points.
When T is large enough that the thermal length

LT ∝ 1=T is much shorter than the length jxR − xLj of
the interface (while still much lower than the bulk gap for
delocalized excitations), the system behaves like a network
of classical resistors. When dephasing is strong enough to
establish a local chemical potential at xL (see Fig. 1), the
current arriving from the source splits equally between the
arms leading to D1, D2, resulting in G ¼ 1=2 for all
candidate states, just as the low-temperature result for
the PHPf (see also Ref. [64], which studied a related
geometry). In principle, the temperature dependence of G
distinguishes between the coherent and incoherent origins
of G ¼ 1=2. While in the former case, deviations from 1=2
increase with temperature, in the latter, they decrease.
Alternatively, coherence may be probed by incorporating
an interference loop for the integer states.
Discussion.—We have proposed two experimental set-

ups where coherent charge-transport measurements can
distinguish between three classes of ν ¼ 5

2
states. (i) Those

whose interfaces with ν ¼ 2 are chiral, e.g., MR. (ii) States
that exhibit chiral interface with ν ¼ 3, e.g., APf. (iii) The
PHPf whose interfaces with both ν ¼ 2, 3 are nonchiral.
Within each setup, two charge measurements can uniquely
identify the class of the state, see Table I. Both setups
require a specific hierarchy of length scales: the localization
length ξ must be the shortest scale to guarantee that each
edge state is reduced to its topologically required mini-
mum. The thermal length must be the longest scale to
ensure coherent transport. Additionally, the island geom-
etry requires measurements for both limits of the aspect
ratios Lx ≫ Ly and Ly ≫ Lx, or for two configurations
related to one another by ν ¼ 2 ↔ ν ¼ 3.

(a) (b)

FIG. 3. The two-terminal setup with the ν ¼ 5
2
island in the MR

phase, embedded in a ν ¼ 2, 3 environment. (a) The fully
transmitting fixed point is stable in the limit Ly ≫ Lx. (b) The
fully reflecting fixed point is unstable in the limit Ly ≳ ξ.

TABLE I. The conductance between source S and drain D1 for
two different sets of filling factors, with non-universal (NU)
conductance bounded between 0 and 1 [63]. The last column
corresponds to the setup of Fig. 3 with interchanged ν ¼ 2 and
ν ¼ 3 states.

Fig. 2(a) Fig. 2(b) Fig. 3 Fig. 3 ð2 ↔ 3Þ
Moore-Read 1 1=2 1 NU
PH-Pfaffian 1=2 1=2 1=2 1=2
anti-Pfaffian 1=2 1 NU 1
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Finally, the same information about the topological order
may be obtained from a setup where the ν ¼ 2 state is
substituted by ν ¼ 0. The additional integer edge modes
add 2 units to the conductance in the setup referred to in the
second and fourth columns of Table I. In the same way, one
can replace ν ¼ 3 by a larger integer.
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