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We present experimental investigation on critical phenomena in Cu2OSeO3 by analyzing the critical
behavior of magnetization using a new method. This is necessary as a crossover from 3D Ising to 3D
Heisenberg has been observed in Cu2OSeO3. The proposed method is applicable to explore the physics for
a wide range of materials showing trivial or nontrivial critical behavior on two sides of the transition.
A magnetic phase diagram has been constructed from the critical analysis. Multiple critical points due to
multiple phases and transition between them have been observed in the phase diagram of Cu2OSeO3.
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Skyrmions have been observed in several materials with
different crystal symmetries [1–7]. In noncentrosymmetric
systems [1–5,7], skyrmionic phase emerges due to the
competition between symmetric exchange interaction (SEI)
and antisymmetric Dzyaloshinskii-Moriya interaction
(DMI) [8,9]. The role of DMI has been established beyond
a doubt for the formation of skyrmion, but the nature of SEI
remains an open question: Is it Heisenberg type or Ising
type? Based on renormalization group (RG) theory, various
models have been developed to explain the critical behavior
of magnetic systems to reveal the exact nature of spin-spin
interaction. The critical behavior of a system is defined by
a set of critical exponents [10] for different universality
classes (UCs) depending on the nature of spin-spin inter-
actions, such as Heisenberg, Ising, or XY for which β and γ
are 0.365 and 1.386, 0.325 and 1.241, and 0.345 and 1.316,
respectively [10], where β is the critical exponent asso-
ciated with magnetization and γ is the critical exponents
associated with susceptibility. Rarely, mean-field values
of β (¼ 0.5) and γ (¼ 1.0) are observed in real systems.
Moreover, RG theory posits that the critical behavior
should be similar below and above the transition temper-
ature TC, which is defined as the temperature above which
order parameter becomes zero. Here, we pose an important
question: Is it possible to have different critical behavior
below and above TC? Nelson [11] first addressed this
nontrivial problem. Here, trivial systems are those which
follow RG theory. Subsequently, Léonard and Delamotte
[12] showed theoretically that there is the possibility of
different critical behavior below and above TC. Recently
obtained critical exponents for some systems, such as
FeGe [13] (β ¼ 0.336� 0.004 and γ ¼ 1.352� 0.003)
and Pr0.6−xErxCa0.1Sr0.3MnO3 [14] (β ¼ 0.355� 0.008
and γ ¼ 1.294� 0.012 for x ¼ 0.06) do not belong to a
single UC. For FeGe, β is close to three-dimensional (3D)
Ising UC and γ is close to 3D Heisenberg UC. For

Pr0.6−xErxCa0.1Sr0.3MnO3, β is close to 3D Heisenberg
UC while γ is close to 3D Ising UC. Thus, the conclusions
obtained from such critical exponents may be ambiguous.
These results indicate that the critical behavior of nontrivial
systems may be different on two sides of the transition.
This brings back another important question: How can one
investigate the critical behavior of nontrivial systems? To
investigate the critical phenomena in nontrivial systems, we
present a new method, i.e., the modified iteration method
(MIM), to investigate the critical behavior of skyrmion host
Cu2OSeO3—a nontrivial system.
Cu2OSeO3 is skyrmion host insulating chiral cubic B20

material with space group P213. The competition between
SEI and DMI results in the formation of multiple phases,
such as multidomain helical (MDH), single domain conical
(SDC), skyrmion [5,15], and fluctuation disordered (FD)
phase [16,17]. All these phases lead to rich phase diagram
due to multiple phase transitions with two phase boundaries
defined by (i) first-order phase transition (FOPT) from
helimagnetic to FD phase with transition temperature at T 0

C
[16,17] and (ii) second-order phase transition (SOPT) from
FD to paramagnetic phase with transition temperature at TC
[7,16]. The FOPT at T 0

C and SOPT at TC have been
established by magnetization [16], entropy [16], and
specific heat [17] measurements. Similar phase diagrams
with two transition temperatures have been observed in
other skyrmion host materials such as MnSi [1,7], FeGe [2],
and Fe0.8Co0.2Si [3]. After FOPT at T 0

C, as shown in Fig. 1,
DMI decreases faster with temperature relative to SEI.
Between T 0

C and TC, SEI and DMI result FD phase [18]
which has been experimentally confirmed by small angle
neutron scattering [19]. Moreover, Cu2OSeO3 has two
types of CuO5 polyhedra—square pyramidal and trigonal
bipyramidal in the ratio of 3∶1—which leads to the
formation of two sublattices [20]. This causes the emer-
gence of the magnetocrystalline anisotropy in the system
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with easy axis along [111] [19,24]. Thus, below TC, the
phase transition and the critical phenomena will be facili-
tated by SEI, DMI, and anisotropy. Generally, DMI is
weaker than Ising or Heisenberg exchange interaction
[9,25]. DMI is substantially reduced above T 0

C and practi-
cally becomes ineffective above TC [26,27]. Hence, the
interactions responsible for the evolution of different phases
below and above TC are different. This means the inter-
actions in Cu2OSeO3 lead to a situation where Wilson-
Fisher theory of critical phenomena [28,29] becomes
nontrivial.
In this Letter, we present our experimental investigation

on phase transition and critical phenomena in Cu2OSeO3 to
address mainly two issues: (i) the type of the SEI responsible
for different phases below TC and (ii) crossover from one
critical behavior to another critical behavior below and above
TC. We show that the critical exponents obtained by iteration
method and change in entropy do not match well with the
critical exponents for a single standard UC for the reasons
discussed previously. To investigate the different critical
behaviors and to obtain the critical exponents below and
above TC, a new method of critical analysis has been
developed. While addressing these issues, we have shown
that it is possible to construct the phase diagram, which
generally agrees with the generic phase diagram of skyrmion
host B20 materials. Multiple critical points, such as tricritical
point, Lifshitz point, and triple point, have been observed
from the constructed phase diagram.
Magnetization measurements were carried out using

physical properties measurement system [20]. In the

vicinity of TC, temperature-dependent magnetization
(M-T) of Cu2OSeO3 (Fig. 1) shows a cusp, which is seen
in other skyrmion host B20 materials such as MnSi [30],
FeGe [13,31], and Fe0.8Co0.2Si [32]. The cusp in theM-T is
emerging mainly due to the competition between SEI and
antisymmetric DMI. The total magnetic moment can be
expressed as, Mexpt ¼ MSEI þMDMI, where Mexpt is the
experimentally observed magnetic moment, MSEI is the
moment due to SEI, and MDMI is the moment due to DMI.
MSEI has been extrapolated using the relation MSEI ∝
ðTC − TÞβ, where β is the magnetization exponent. The
peak position (or maximum) and minimum of dM=dT have
been found to be at T 0

C ¼ 58.22 K and TC ¼ 59.42 K. The
λ-like variation in the specific heat [17] and discontinuous
change in magnetic entropy [16] identify the FOPT around
T 0
C. Shoulderlike variation in the specific heat, continuous

variation in the change in entropy, and positive slope ofM2

versus μ0H=M, known as the Arrott plot [33], confirm
SOPT at TC [16,17]. As discussed before, the DMI
weakens faster compared to SEI after T 0

C and this is
responsible for the increase in the magnetization which
can be explained as follows: in the helical phase, spins form
helix with a pitch over which net magnetization is zero. In
the skyrmionic phase, the spins form a helix on the
diametric points of skyrmion with a pitch equal to the
diameter of skyrmion. Again net magnetization for sky-
rmion is zero. The nonmonotonic temperature dependence
of magnetization near T 0

C and TC can be explained as
follows: (i) as temperature increases, DMI decreases sub-
stantially resulting breakage of spin textures which causes
enhancement of magnetic moment, and (ii) further increase
in temperature leads to evolution of FD phase, which
causes lowering of magnetic moment.
Some groups have investigated the critical behavior of

skyrmion host B20 materials by erroneously choosing
maximum of the M-T as the transition temperature
[31,34]. Generally, the critical behavior of a magnetic
system should be studied around the transition temperature
determined by the minimum of dM=dT [13,30,32], above
which order parameter becomes zero. Moreover, the actual
TC can be justified by the point of inflection in the specific
heat, magnetization, and susceptibility, and the maxi-
mum of change in entropy at TC. To investigate the critical
behavior in Cu2OSeO3, we have used the Arrott-
Noakes relation [35], which is given by ðμ0H=MÞ1=γ ¼
ðT − TCÞ=TC þ ðM=M1Þ1=β, where M1 is a temperature
and field-dependent constant. ðμ0H=MÞ1=γ versus M1=β

plots, which are known as modified Arrott plots (MAPs),
were obtained using the β and γ values of the standard 3D
models. By fitting with linear curves in the high field region
of the MAPs, normalized slopes (NSs) were estimated [13]
as shown in Fig. 2(a). NS is defined as NS ¼ SðTÞ=SðTCÞ,
where SðTÞ is the slope of the linear fit to the MAPs at
temperature T and SðTCÞ is the slope of the linear fit to the
MAP at temperature TC. The critical behavior of a

FIG. 1. Temperature-dependent magnetization (M-T) of
Cu2OSeO3 measured without applying field. The red solid line
represents the expected variation of the moment due to SEI
(MSEI) and the blue solid line represents the variation of magnetic
moment due to DMI (MDMI). Black solid line is the spline fit to
the experimental data. Inset (1) is the expanded view of the M-T
in the vicinity of TC. Inset (2) shows the first derivative (dM=dT)
of the M-T. The minimum of the dM=dT gives TC ¼ 59.42 K,
and maximum of the dM=dT represents T 0

C ¼ 58.22 K. Solid red
line represents the derivative of the M-T corresponding to MSEI.
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magnetic material will follow a single UC if the NSs
obtained from the critical exponents lead to a constant
slope, i.e., 1 or close to 1, irrespective of the temperature
being below or above TC. In contrast to standard and trivial
magnetic systems, this primary inspection leads to the
crossover in the critical behavior of Cu2OSeO3 from 3D
Ising (below TC) to 3D Heisenberg UC (above TC).
Iteration method is most frequently used to determine the

critical exponents [36]. Figure 2(a) shows the results from
the iteration method, which yields β ¼ 0.343� 0.010 and
γ ¼ 1.206� 0.020 [20]. It is clear that the deviation is
unusually large in the temperature dependence of the NS
plot. The large deviation in the NS plot indicates that
iteration method is inapplicable in Cu2OSeO3 for the
reasons discussed above. The issue in the iteration method
is that field-dependent magnetization (M-H) isotherms are
fitted with the same set of critical exponents below and
above TC. This leads to identical critical behavior below
and above TC. To address this problem, we have proposed a
new method, MIM, to analyze the critical behavior of
Cu2OSeO3—a nontrivial system. In our MIM, we divided
the M-H isotherms in two sets—one for T ≤ TC and the
other one for T ≥ TC.

The MIM to determine the critical exponents is as
follows. (i) Take two sets of M-H isotherms, the first
one for T ≤ TC and the second one for T ≥ TC. It means
M-H taken at TC will be common in both sets. Now, select
one set of M-H isotherms for analysis. (ii) Take the critical
exponents (β and γ) of that particular UC, which show NSs
[see Fig. 2(a)] close to 1. (iii) Vary β and γ in such a way
that the NSs obtained from the constructed MAPs approach
closer to 1. In the whole process, vary β and γ maintaining
TC unaltered. (iv) When NSs converge to 1, stop the
process. Thus, the critical exponents, β− and γ− for T ≤ TC
or βþ and γþ for T ≥ TC, will be determined. Otherwise,
repeat steps (ii) and (iii) till NSs converge to 1. Repeat
the above processes by selecting the remaining other
set of the M-H isotherms. Thus, ðβ−∶γ−Þ ¼ ð0.310�
0.010∶1.170� 0.005Þ for T < TC and ðβþ∶γþÞ¼ð0.355�
0.005∶1.350�0.005Þ for T >TC have been obtained
[Fig. 2(a)]. The self-consistency and reliability of these
critical exponents were checked by Widom scaling relation
(δ ¼ γ=β þ 1), which gives δ values (δ−¼4.77�0.16
below TC and δþ ¼ 4.80� 0.09 above TC) close to the
value of δ ¼ 4.63� 0.01 obtained from the M-H taken at
TC using M ¼ Dðμ0HÞ1=δ, where D is a constant. The
MAPs obtained from the MIM are shown in Fig. 2(b) [20].
It is required to estimate the range and spin dimension-

ality (n) in Cu2OSeO3 to confirm the appropriate UC with
the help of critical exponents determined by the MIM.
According to RG theory [28,29], the range of magnetic
interaction depends on the exchange distance JðrÞ [37],
which decays with distance r as JðrÞ ≈ r−ðdþσÞ, where d
and σ are the spatial dimensionality and constant, respec-
tively. σ ≤ 3=2 satisfies the mean-field model (β ¼ 0.5,
γ ¼ 1) and σ ≥ 3=2 implies short-range magnetic inter-
action. The relation of γ with d, n and σ is γ ¼ 1 þ ð4=dÞ
½ðn þ 2Þ=ðn þ 8Þ�Δσ þ f½8ðn þ 2Þðn − 4Þ�=½d2ðn þ 8Þ2�g
f1 þ ½2Gðd=2Þð7n þ 20Þ�=½ðn − 4Þðn þ 8Þ�gΔσ2, where
Δσ ¼ ½σ − ðd=2Þ� and Gðd=2Þ ¼ 3 − ð1=4Þðd=2Þ2. Those
values of d, n, and σ will be valid if the values of β, γ, and δ
are close to their experimental values [19,38,39]. The
critical exponents obtained from the MIM yield ðd∶n∶σÞ ¼
ð3∶1∶1.80� 0.01Þ below TC and ðd∶n∶σÞ ¼ ð3∶3∶1.91�
0.008Þ above TC. This implies that JðrÞ varies as ∼r−4.80
and ∼r−4.91 below and above TC, respectively. Hence, the
critical behavior of Cu2OSeO3 is 3D Ising (n ¼ 1) type
below TC and 3D Heisenberg (n ¼ 3) type above TC. The
essence of MIM is as follows: same values of n will yield
identical critical behavior below and above TC—a trivial
situation, and different values of n will yield different
critical behavior below and above TC—a nontrivial sit-
uation. Thus, it can be concluded that MIM is a general
method for critical analysis and iteration method is a special
case of MIM. It can be argued that magnetocrystalline
anisotropy and anisotropy due to spin-orbit coupling,
which actually gives rise to DMI in these systems, are
responsible for 3D Ising-type interaction below TC. It will

FIG. 2. (a) Normalized slope, NS ¼ SðTÞ=SðTCÞ, plots con-
structed using the critical exponents of standard 3D models,
obtained by iteration method, and estimated from the modified
iteration method (MIM) for T < TC and T > TC. (b) MAPs of
Cu2OSeO3 constructed using the critical exponents obtained
from MIM. H, Heisenberg; IM, iteration method. TMF, tricritical
mean-field.
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be interesting to show theoretically how the presence of
DMI and different anisotropic interactions with SEI give
rise to effective anisotropic exchange interaction respon-
sible for various topological spin textures below TC. Using
RG theory and exact numerical diagonalization methods
[40], it has been shown that twisting in the spins may be
observed in Ising systems in the presence of DMI.
The scaling equation of a magnetic system is given as

MðH; ϵÞ ¼ ϵβf�ðH=ϵβþγÞ, where f� are regular functions
such as fþ for T > TC and f− for T < TC [19,27,41]. Let
us define the renormalized magnetization as m ¼ Mjϵj−β
and renormalized field as h ¼ μ0Hjϵj−ðβþγÞ. Two universal
curves (m versus h) were obtained below and above TC
[Fig. 3(a)] using the critical exponents β−¼0.310�0.010,
γ− ¼ 0.170� 0.005 for T < TC and βþ ¼ 0.355� 0.005,

γþ ¼ 1.350� 0.005 for T > TC [20]. For further corrobo-
ration, the renormalized Arrott-plots (RAPs), i.e., m2

versus h=m [42], has been plotted and shown in Fig. 3(b).
Two separate universal curves have been obtained in RAPs.
Thus, scaling results justify the method proposed here. The
log-log plot of both scaled [inset of Fig. 3(a)] and RAPs
[inset of Fig. 3(b)] show deviation from the universal curve
in low field. This deviation can be understood as follows: if
there were only 3D Ising exchange interaction below TC,
then all the isothermal curves would have collapsed onto
the universal curve. However, the deviation from universal
curve in the low field indicates the presence of another
interaction in addition to the Ising interaction and that is
DMI, which cannot exist at high field. This can be
accounted from the Hamiltonian for DMI, HDMI ¼
−
P

ij D⃗ij:ðS⃗i × S⃗jÞ, where S⃗i and S⃗j are the spins at the
ith and jth site, respectively. As the field increases, HDMI
vanishes and this causes universal scaling at high field.
Figure 3(c) shows the M-H taken at 5 K. After ≈ 150 mT,
the saturation magnetization becomes 0.53μB=Cu2þ, which
is due to 3(up):1(down) spin configuration. So, the spins
are aligned parallel (or antiparallel) to each other in the high
field region (≥ 150 mT). This, further, elaborates the
excellent scaling in the high field region but not in the
low field region due to presence of DMI.
The expanded view of the log-log plot of the RAPs

[Fig. 3(d)] show multiple positive and negative slopes in
low field. The phase boundaries constructed from the
multiple slopes match well with the reported phase dia-
grams [4,11,15,16]. Thus, it can be argued that the first
positive slope in the RAPs represent the MDH phase. The
next negative slope is due to the SDC phase. A positive
slope appears in the SDC phase from ∼55 to ∼58 K, and
the field range from ∼8 to ∼21 mT. This region belongs to
the skyrmion phase. After SDC, positive slope appears in
high field. The noticeable point is that the multiple phases
are below 58.5 K because the curve at 58.5 K shows only
positive slope in the whole field region. No negative slope
in the curve at 58.5 K implies that the helimagnetic
phase transition line is below 58.5 K. It also implies the
existence of weak DMI above T 0

C (Fig. 1) corroborating the
existence of the FD phase [16,29] between T 0

C and TC.
Based on RAPs analyses, the phase boundaries of MDH to
SDC, SDC to skyrmion, and SDC to field polarized (HC)
phase can be estimated. With the help of our entropic [16]
and M-T analyses [20], we have estimated the phase
boundaries connecting the FD phase and paramagnetic
phase. Figure 3(e) shows the constructed phase diagram
using the above analyses. To determine the order of
phase transition between different phases, specific heat
[1,17], change in entropy [16], and Banerjee’s criteria [43]
have been employed. The tricritical point and the
Lifshitz point have been found at ∼ð57.5 K; 31 mTÞ and
∼ð58.8 K; 30 mTÞ, respectively. As shown in Fig. 3(e),
skyrmionic, SDC, and FD phases are meeting at two

FIG. 3. (a) Scaled data of Cu2OSeO3 using scaling equation of
state. Two universal curves are observed below and above TC.
Inset: log-log plot of the scaled data. (b) Renormalized Arrott-
plots (RAPs) of the scaled data of Cu2OSeO3. Inset: log-log plot
of the RAPs. (c) M-H curve taken at 5 K. Saturation magneti-
zation of ≈0.53μB=Cu2þ ion reveals ferrimagnetic ordering above
150 mT. (d) Expanded view of the log-log plot of the RAPs below
TC. Arrows represent the schematic phase boundary points.
(e) Phase diagram constructed using the RAPs of Cu2OSeO3,
M-T taken at various fields, and previous reports [7,16,17,43].
TCP, tricritical mean-field; TP, triple point; LP, Lifshitz point.

PHYSICAL REVIEW LETTERS 128, 015703 (2022)

015703-4



different points at ∼ð58 K; 8 mTÞ and ∼ð58 K; 17 mTÞ on
the FOPT boundary line. This indicates that these
two points should be the triple point in Cu2OSeO3 as
shown in Fig. 3(e).
In conclusion, critical analysis of magnetization in

Cu2OSeO3 shows the existence of different critical expo-
nents below and above the transition point. This nontrivial
situation can be dealt with the proposed method that can be
applied to any systems, having SOPT, in which the nature
of interactions is different on two sides of the transition. In
fact, the proposed method is applicable both in trivial as
well as in nontrivial systems. We have further shown that
the phase diagram of Cu2OSeO3 can be obtained from this
critical analysis. The constructed phase diagram shows the
existence of tricritical point, Lifshitz point, and triple point
in Cu2OSeO3. A combined theoretical and experimental
investigation is required to reveal the microscopic origin
behind the different UCs of critical behavior for T < TC
and T > TC.
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