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Recent advances in experiment and theory suggest that superfluid 3He under planar confinement may
form a pair density wave (PDW) whereby superfluid and crystalline orders coexist. While a natural
candidate for this phase is a unidirectional stripe phase predicted by Vorontsov and Sauls in 2007, recent
nuclear magnetic resonance measurements of the superfluid order parameter rather suggest a two-
dimensional PDW with noncollinear wave vectors, of possibly square or hexagonal symmetry. In this
Letter, we present a general mechanism by which a PDW with the symmetry of a triangular lattice can be
stabilized, based on a superfluid generalization of Landau’s theory of the liquid-solid transition. A soft-
mode instability at a finite wave vector within the translationally invariant planar-distorted B phase triggers
a transition from uniform superfluid to PDW that is first order due to a cubic term generally present in the
PDW free-energy functional. This cubic term also lifts the degeneracy of possible PDW states in favor of
those for which wave vectors add to zero in triangles, which in two dimensions uniquely selects the
triangular lattice.
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Introduction.—3He arguably best epitomizes the para-
digm of emergence in condensed matter physics.
Atomically one of the simplest isotopes in the periodic
table of elements, 3He, nonetheless, gives rise to a rich
variety of paired superfluid phases at low temperatures. In
bulk and absent magnetic fields, only two superfluid phases
are thermodynamically stable [1]: the B phase with
isotropic quasiparticle gap appears at zero pressure, and
an additional A phase with nodal quasiparticles is stabilized
at high pressure. In contrast to 4He atoms or s-wave Cooper
pairs, the p-wave Cooper pairs in 3He couple strongly to
geometric perturbations on account of their spatial
anisotropy, leading to the possibility of new superfluid
phases under confinement.
While superfluid 3He in planar confinement was first

studied decades ago [2,3], recent developments have led to
a resurgence of interest in the subject. For 3He confined to a
slab of thicknessD on the order of the superfluid coherence
length ξ0, Ginzburg-Landau (GL) [4] and quasiclassical
[5–8] theories predict that the A phase may appear at zero
pressure, and that the B phase gives way to the planar-
distorted B phase (PDB phase) with a gap that differs in
directions parallel and normal to the confinement plane.
Owing to advances in microfabrication techniques, those
early predictions have recently been verified experimen-
tally [9–13]. Since, for moderate confinement, the PDB
phase can be viewed as a three-dimensional (3D) topo-
logical superfluid [14–17], such 3He films would also
provide an ideal platform for the detection of Majorana
fermions [18–21].

In addition to the A and PDB phases, which are homo-
geneous in the confinement plane, Vorontsov and Sauls
predicted, in 2007, that confinement could lead to an
additional superfluid phase with spontaneously broken
translation symmetry—the stripe phase [22–24]. The stripe
phase is a unidirectional pair density wave (PDW) [25]
analogous to the Larkin-Ovchinnikov state [26–28] that can
also be understood as a periodic arrangement of domain
walls [29,30] in the PDB phase order parameter. While such
domain walls are not energetically favorable in bulk 3He,
they reduce the amount of surface pair breaking relative to a
homogeneous phase under planar confinement [31].
Recent experiments have sought evidence of the stripe

phase via nuclear magnetic resonance (NMR) measure-
ments of the superfluid order parameter [12] and fourth-
sound measurements of the superfluid density [13]. The
latter experiment suggested that a new phase sandwiched
between the A and PDB phases appears under sufficient
confinement, although the precise nature of this phase and
of the transitions surrounding it remains to be elucidated.
Reference [12], likewise, found evidence of a new phase in
the vicinity of the A-PDB transition, but the NMR
signatures of this phase were inconsistent with the stripe
phase. Specifically, the observation of a kink in the NMR
frequency shift at a critical tipping angle β� ruled out the
stripe phase, which should exhibit no such kink [23], but
the measured value of β� did not match that expected for the
translation-invariant PDB phase. Rather, the authors of
Ref. [12] reconciled those observations by proposing a
“polka-dot phase” [32]: a two-dimensional (2D) PDW, of
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possibly hexagonal or square symmetry. The possibility of
a 2D PDW as an alternative to the 1D stripe phase was
recognized by Vorontsov and Sauls [22,33], but not
explored quantitatively [34]. A preliminary GL analysis
for a 2D PDW with the symmetry of a square lattice,
mentioned in Ref. [12], found that such a phase was only
metastable, with a free energy higher than that of the
stripe phase.
To resolve this conundrum from a theoretical standpoint,

we provide, in this Letter, a general physical argument—
summarized in this paragraph and later substantiated by
explicit calculations—according to which a PDW in con-
fined 3He ought, indeed, to be two dimensional and, also, to
possess the hexagonal symmetry of a triangular lattice. Our
theory can be viewed as a generalization of Landau’s theory
of weak crystallization [36] to superfluids. In Landau’s
theory, the Fourier component nq of an equilibrium
deviation δnðrÞ ¼ nðrÞ − n0 of a classical fluid’s density
nðrÞ from uniform density n0 serves as the order parameter
for the liquid-solid transition. As the transition is
approached from the liquid side, density fluctuations
become strongly peaked in reciprocal space on a surface
of momenta jqj ¼ Q which is spherical on account of the
fluid’s unbroken rotational symmetry. Although this
naively induces an instability toward crystallization for a

continuously degenerate set of wave vectors [37], the
Landau free-energy functional contains a cubic term
∼
P

q1;q2;q3 nq1nq2nq3δq1þq2þq3;0 which lifts this degeneracy,
simultaneously rendering the transition first order and
favoring crystalline lattices for which wave vectors add
up to zero in triangles. A first attempt to transpose these
ideas to a PDW or “superfluid crystallization” transition in
3He meets the objection that cubic terms in the GL
functional for a superfluid are forbidden by Uð1Þ gauge
symmetry. However, the latter functional is appropriate for
a superfluid transition out of the normal state. As we show
below, the Landau functional for a PDW transition within a
superfluid state, in which gauge symmetry is already
broken, can, indeed, contain a cubic term. This term is
analogous to that of the liquid-solid transition, with nq
replaced by the Fourier components of the superfluid order
parameter. Combined with the softening at a finite wave
vector jqj ¼ Q of a particular collective mode in the
confined superfluid [38], the cubic term drives a first-order
transition from the homogeneous superfluid to a PDW
whose Bravais lattice structure, being two dimensional, is
necessarily triangular.
Fluctuations in the PDB phase.—Our starting point is

the GL free-energy functional for 3He [1]

F ¼
Z

d3r½K1∂kAμj∂kA�
μj þ K2∂jAμj∂kA�

μk þ K3∂kAμj∂jA�
μk þ αtrAA†

þ β1jtrAAT j2 þ β2ðtrAA†Þ2 þ β3trAATðAATÞ� þ β4trðAA†Þ2 þ β5trAA†ðAA†Þ��; ð1Þ

where Aμj is the 3 × 3 superfluid order parameter with μ
spin and j orbital indices, and α, β1;…; β5, and K1, K2, K3

are phenomenological parameters. We will employ values
of these parameters given by the weak-coupling approxi-
mation [1], but comment on the effect of strong-coupling
corrections [23,39] at the end. Assuming planar confine-
ment with specular interfaces in the z direction, the order
parameter in the PDB phase is [8]

ĀμjðzÞ ¼

0
B@

ΔkðzÞ 0 0

0 ΔkðzÞ 0

0 0 Δ⊥ðzÞ

1
CA; ð2Þ

which incorporates the planar phase [8] with Δ⊥ðzÞ ¼ 0 as
a special case. The order parameter is uniform in the
confinement (xy) plane and invariant under simultaneous
SOð2ÞLzþSz rotations of the orbital and spin coordinates
about the z axis. To search for a PDW instability in the PDB
phase, we write Aμj as

Aμjðrk; zÞ ¼ ĀμjðzÞ þ
X
q

ϕμjðq; zÞeiq·rk ; ð3Þ

where rk ¼ ðx; yÞ and q ¼ ðqx; qyÞ. Our strategy is to
construct a Landau functional for the fluctuation ϕ by
treating it as a small correction to the PDB order parameter
(2) and expanding (1) to quartic order in ϕ. Subtracting the
free energy F½Ā� of the PDB phase, and dividing by the
sample area, the resulting PDW free-energy-density func-
tional is of the form

fPDW½ϕ� ¼ fð2Þ½ϕ� þ fð3Þ½ϕ� þ fð4Þ½ϕ�; ð4Þ

where the superscripts refer to the order of expansion in ϕ,
and linear terms are absent since Ā is a stationary point
of F.
First, we focus on the quadratic term fð2Þ, which contains

contributions from both the quadratic and quartic terms in
(1), and can be written as

fð2Þ½ϕ� ¼
X
q

Z
D

0

dzϕ�
μjðq; zÞĈμj;νkðq; zÞϕνkðq; zÞ; ð5Þ
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where D is the sample thickness, and Ĉ is a q-dependent
Hermitian differential operator that can be written as the
sum of two terms, Ĉð0; zÞ þ δĈðq; zÞ. Ĉð0; zÞ contains
“kinetic” terms proportional to ∂2

z as well as z-dependent
“potential” terms quadratic in the equilibrium order param-
eters ΔkðzÞ and Δ⊥ðzÞ [38]. δĈðq; zÞ contains explicitly
q-dependent terms arising from the derivative terms in (1).
In the spirit of a Landau expansion, first, we use Eq. (5)

to determine the normal modes of the system and isolate the
particular mode that becomes critical at the PDW transition.
These normal modes are the eigenvectorsΦðjÞ

q ðzÞ of Ĉðq; zÞ
with eigenvalues λðjÞðqÞ, which we compute numerically
[40]. Expanding the fluctuation ϕ in (5) in terms of those
normal modes, we have

fð2Þ½ϕ� ¼
X
q

X
j

λðjÞðqÞjuðjÞq j2; ð6Þ

where uðjÞq is the amplitude of the fluctuation in the normal

mode ΦðjÞ
q ðzÞ. In Fig. 1(a), we plot the lowest 25 eigen-

values, which, by rotational invariance in the PDB phase,
depend only on the magnitude q of the wave vector q.
Omitting spin and orbital indices, the fluctuation
ϕðrÞ ¼ P

q ϕðq; zÞeiq·rk can be decomposed into real
ϕþðrÞ and imaginary ϕ−ðrÞ parts which do not mix at
quadratic order because of time-reversal symmetry in the
PDB phase; the normal modes can then be separated into
real and imaginary modes according to this decomposition.
At q ¼ 0, the normal modes carry an additional SOð2ÞLzþSz
angular momentum quantum number m ¼ 0;�1;�2 [38];
a nonzero q acts as a vector perturbation which mixes q ¼ 0

eigenmodes with different angular momenta. By plotting

the square root
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λðjÞðqÞ

q
of the normal mode eigenvalues,

which is proportional to bosonic collective mode frequen-
cies ωjðqÞ [38], we find one imaginary [Fig. 1(b)] and three
real [Fig. 1(c)] linearly dispersing Goldstone modes.
The former corresponds to the usual Uð1Þ phase (phonon)
mode of neutral superfluids, and the latter are associated
with the SOð3ÞS × SOð2ÞLz

→ SOð2ÞLzþSz breaking of
spin and orbital symmetries peculiar to the PDB phase [40].
Mode softening.—In addition to the gapless Goldstone

modes, the PDB phase supports gapped collective modes
which, should they soften as external parameters such as
temperature T, pressureP, or confinementD are varied, can
lead to additional symmetry-breaking instabilities within
the superfluid state. Such mode softening was observed in
Ref. [38], where upon tuning the sample thickness across a
certain critical value, the frequency ωj� ðqÞ of a particular
real collective mode j ¼ j� was found to touch zero at a
finite wave vector jqj ¼ Q and subsequently become purely
imaginary. The ensuing instability was then argued to lead
to a 1D stripe phase with wave vector Q. In our GL
description (6), this softening corresponds to the (real)
eigenvalue λðj�ÞðqÞ for a particular real normal mode

Φðj�Þ
q ðzÞ continuously crossing from positive to negative

on a ring of momenta jqj ¼ Q (Fig. 2), and identifies this
mode as the critical mode for the PDW transition. The
instability region is bounded by two mode softening
temperatures T�

1 and T�
2 that straddle the A-PDB transition

line [Fig. 3(a)]; given our expansion (3), T�
2 corresponds,

here, to an instability of the planar (P) phase, which is
degenerate with the A phase at weak coupling [8]. Thus,
discarding the noncritical modes in the vicinity of the
transition, we can approximate
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FIG. 1. (a) Eigenvalues λðjÞðqÞ in units of the normal-state
density of states Nð0Þ vs momentum q ¼ jqj for real (black) and
imaginary (blue) normal modes in the PDB phase; their square
root (b),(c) is proportional to collective mode frequencies.
Parameters are chosen as D ¼ 300 nm, P ¼ 10 bar, and
T ¼ 0.914 mK; other parameters in the PDB phase give quali-
tatively similar results.

FIG. 2. Black lines: eigenvalues λðjÞðqÞ vs momentum q ¼ jqj
for real normal modes in the vicinity of the softening instability at
T ¼ T�

1: (a) before softening (T ¼ 1.318 mK, r > 0); (b) at
softening (T ¼ T�

1 ¼ 1.336 mK, r ¼ 0); (c) after softening
(T ¼ 1.380 mK, r < 0). Here, r is the tuning parameter for
the instability, appearing in the approximate form λðj�ÞðqÞ ≈
rþ κðq2 −Q2Þ2 of the critical mode eigenvalue (dashed red
line). Parameters are chosen asD ¼ 300 nm and P ¼ 10 bar, and
we find Q ≈ π=ð ffiffiffi

3
p

DÞ as in Ref. [23].
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fð2Þ½ϕ� ≈
X
q

½rþ κðq2 −Q2Þ2�juqj2; ð7Þ

where uq ≡ uðj�Þq is the critical mode amplitude, which
obeys u�q ¼ u−q since ϕþðrÞ and its normal-mode decom-
position are real. We have also replaced the exact normal
mode eigenvalue λðj�ÞðqÞ by an approximate functional
form which captures its key qualitative features near the
instability (Fig. 2). The parameter r changes sign across the
instability, and κ controls the velocity of the linearly
dispersing mode ωj�ðqÞ ∝

ffiffiffi
κ

p
Qjjqj −Qj that obtains at

criticality (r ¼ 0) near jqj ¼ Q. As we now discuss, this
further approximation—while not strictly necessary—
allows for a simplified analytical treatment of the PDW
transition that makes its analogy to the liquid-solid tran-
sition manifest [43].
Landau theory of the PDW transition.—So far, our

analysis has identified the critical normal-mode amplitude
uq—or equivalently its position-space inverse Fourier
transform uðrkÞ ¼

P
q e

iq·rkuq, which is a real function—
as the appropriate order parameter for the PDW transition.
Awell-behaved Landau functional for umust include terms
beyond quadratic order, i.e., self-interaction terms which
arise from the terms cubic and quartic in ϕ in the free-
energy-density functional (4). To compute these terms, we
substitute in fð3Þ½ϕ� and fð4Þ½ϕ� the approximate mode

expansion ϕ ≈
P

q uqΦ
ðj�Þ
q ðzÞeiq·rk that discards the non-

critical modes ΦðjÞ
q ðzÞ with j ≠ j�. One obtains fðkÞ½ϕ�≈P

q1;…;qk Γ
ðkÞðq1;…; qkÞuq1 � � � uqkδPk

j¼1
qj;0

, where the

k-point vertex ΓðkÞ is, in general, momentum dependent
[40], and the corresponding interaction nonlocal in position
space. In the spirit of a gradient expansion, we approximate

this nonlocal interaction by a local interaction fðkÞ½ϕ� ∝R
d2rkukðrkÞ obtained by setting to zero all momenta in

ΓðkÞ. The cubic and quartic terms in (4) become

fð3Þ½ϕ� ≈ −w
X

q1;q2;q3

uq1uq2uq3δq1þq2þq3;0; ð8Þ

fð4Þ½ϕ� ≈ η
X

q1;q2;q3;q4

uq1uq2uq3uq4δq1þq2þq3þq4;0; ð9Þ

where w ∝ Γð3Þð0;…; 0Þ and η ∝ Γð4Þð0;…; 0Þ. We find
that η > 0 regardless of temperature, pressure, and confine-
ment [40], thus, fPDW in (4) is properly bounded from
below.
Equations (7), (8), and (9) define a well-behaved

Landau functional for the PDW transition in confined
3He, which is the first main result of this Letter. This
Landau functional being mathematically identical to that
for the crystallization transition in classical statistical
mechanics [36,43], we simply transpose well-known
results for the latter to the PDW transition. Restricting
our analysis to momenta q with fixed magnitude jqj ¼ Q,
since, at r ¼ 0, only modes with such momenta soften, we
identity the PDW phase as that in which order-parameter
configurations uq ≠ 0 globally minimize fPDW. Provided
w ≠ 0, the continuous degeneracy of such configurations
is partially lifted by the cubic term (8), which favors a
PDW with noncollinear wave vectors such that
q1 þ q2 þ q3 ¼ 0, i.e., that add up to zero in triangles.
In the planar phase at T�

2, we find w ¼ 0 and the
degeneracy remains unresolved at the mean-field level
[40]. In the PDB phase at T�

1, however, we find w ≠ 0 at all
pressures and the noncollinear constraint applies. In 2D,
this necessarily implies a PDW whose reciprocal lattice is
triangular [43], corresponding to a triangular Bravais
lattice with lattice constant a ¼ 4π=ð ffiffiffi

3
p

QÞ in position
space. This conclusion is the second main result of this
Letter.
To be explicit, we set the PDW order parameter uq

to a constant u for q ∈ f�G1;�G2;�G3g and to zero
otherwise, where we can take G1 ¼ Qð1; 0Þ, G2 ¼
Qð− 1

2
;

ffiffi
3

p
2
Þ, and G3 ¼ −G1 − G2 without loss of generality

(fPDW is invariant under a global rotation). The Landau
functional (4) then reduces to a simple function of u

fPDWðuÞ ¼ 6ru2 − 12wu3 þ 216ηu4; ð10Þ

whose phase diagram is well understood [43]. Assuming
fixed pressure and sample thickness for illustration, we can
write r ¼ bðT�

1 − TÞ in the vicinity of the PDW transition
from the PDB side, where b > 0. Because of the cubic
term, the mode softening instability at T�

1 is preempted by a
first-order transition at a lower temperature TPDW < T�

1

FIG. 3. (a) Phase diagram of a D ¼ 300 nm slab, with mode-
softening temperatures T�

1 and T�
2 flanking the would-be A-PDB

transition line TAB. The instability on the PDB side (T�
1) is

preempted by a first-order transition at TPDW, which (b) is
approximately 4% lower than T�

1 relative to the width of the
instability region.
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TPDW ¼ T�
1 −

w2

36ηb
; ð11Þ

which is the true PDW transition temperature. We find the
difference T�

1 − TPDW is approximately 4% of the width
T�
2 − T�

1 of the instability region for a wide range of
pressures and sample thicknesses [Fig. 3(b)]. T�

1 is then
understood as the limit of metastability of the uniform
(PDB) phase inside the PDW phase. Conversely, the PDW
phase exists as a metastable phase for T�� < T < TPDW

where T�� ¼ TPDW − w2=ð288ηbÞ.
Triangular lattice PDW.—Finally, we turn to the detailed

structure of the PDW order parameter. In the PDW phase,
the continuous SOð2ÞLzþSz spin-orbital rotation symmetry
is spontaneously broken to a discrete CLzþSz

6 subgroup of
joint spin-orbital rotations. The PDW order parameter

ϕ ¼ u
P

qΦ
ðj�Þ
q ðzÞeiq·rk , where the sum is now restricted

to the six wave vectors q ∈ f�G1;�G2;�G3g, is, in fact,
invariant under the full spin-orbital point group DLzþSz

6

DðgÞϕðg−1rk; zÞD−1ðgÞ ¼ ϕðrk; zÞ; g ∈ D6; ð12Þ

where the representation matrices DðgÞ act on both orbital
and spin indices. Using the theory of invariants [44], ϕ can
be expressed as ϕ ¼ u

P
j;k ϕ

ðj;kÞðzÞXðj;kÞðrkÞ where

Xðj;kÞðrkÞ denotes the kth DLzþSz
6 invariant associated with

the irreducible representation j of D6, and ϕðj;kÞðzÞ the
corresponding nonuniversal amplitude encapsulating the z
dependence of the PDW order parameter [40]. Only five
such amplitudes are nonzero [Fig. 4(a), also, Fig. (S1) in
Ref. [40] ]; the corresponding X invariants involve basis
functions for the irreducible A1, E1, E2 representations
[Figs. 4(b)–4(d)], to be understood as triangular lattice
harmonics with angular momentum l ¼ 0, 1, 2, respec-
tively. The z dependence of the amplitudes in Fig. 4(a) is
such that ϕ is also invariant under reflection in
the z direction: Mzϕðrk;−zÞM−1

z ¼ ϕðrk; zÞ, where Mz ¼
diagð1; 1;−1Þ acts on both orbital and spin indices.

Conclusion.—In summary, we have proposed a general
mechanism whereby a 2D PDW with hexagonal symmetry
is stabilized in confined 3He: the Landau functional for a
PDW transition within the uniform superfluid generically
contains a cubic term which, upon approach to a crystal-
lization instability, leads to a first-order transition to a PDW
with noncollinear wave vectors forming a triangular lattice.
We demonstrated that, in the weak-coupling approxima-
tion, this mechanism is operative for a wide range of sample
thicknesses and pressures near the crystallization instability
within the PDB phase.
In our weak-coupling treatment, the coefficient of the

cubic term was found to vanish at the PDW instability of
the planar phase (T�

2). In reality, strong-coupling effects
stabilize the A phase over the planar phase in this part of the
phase diagram, and Eq. (2) is the wrong expansion point.
The construction of a PDW Landau functional using the
A phase as a starting point and incorporating strong-
coupling corrections would be necessary to address the
question whether the A-PDW transition remains continu-
ous or also becomes first order. Additionally, direct
numerical minimization of the 3D GL functional using a
DLzþSz

6 -invariant PDW ansatz beyond the single-harmonic
approximation utilized here would be desirable for more
quantitative comparisons with experiment.
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