
Coherence of Velocity Fluctuations in Turbulent Flows

G. Prabhudesai ,* S. Perrard , F. Pétrélis, and S. Fauve
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We investigate the spatiotemporal quantity of coherence for turbulent velocity fluctuations at spatial
distances of the order or larger than the integral length scale l0. Using controlled laboratory experiments, an
exponential decay as a function of distance is observed with a decay rate that depends on the flow
properties. The same law is observed in two different flows, indicating that it can be a generic property of
turbulent flows.
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Introduction.—Part of the spatial structure of turbulent
flows has been extensively studied owing to the concept of
energy cascade by Richardson [1] and later extended to a
scale invariant hypothesis in Kolmogorov’s 1941 theory
[2]. In a three dimensional turbulent flow, a direct cascade
of energy takes place between the integral length scale l0
associated to the energy injection scale and the
Kolmogorov length scale η where energy gets eventually
dissipated. In contrast, the spatiotemporal properties of
velocity fluctuations in turbulent flows for separation
distance r comparable to or larger than the integral length
scale l0 have been significantly less studied. Yet, under-
standing the behavior of turbulent fluctuations at large
scales is not only of fundamental interest, it also has
application for instance in geophysical or astrophysical
flows when a large scale field bifurcates over a small scale
turbulent flow [3]. Magnetic field generation by the alpha
effect of astrophysical dynamos [4] and large scale hydro-
dynamic flow generated by the anisotropic kinetic alpha
effect of helical flows [5] are two examples in which
fluctuations at small scales may affect a large scale field, in
particular if these fluctuations display some coherent
behavior at large temporal or spatial scales. The statistical
properties of the large scales of turbulent flows are also of
interest in industrial applications such as wind turbine
farms for instance (see below).
One tool to study the spatiotemporal velocity fluctua-

tions at large scales in an homogeneous, stationary turbu-
lent flow is the magnitude squared coherence or simply
coherence defined from the signal at two points separated
by vector r and a time lag τ as

Cðr; fÞ ¼ jEijðr; fÞj2
EiðfÞEjðfÞ

; ð1Þ

where Eijðr;fÞ¼
R∞
−∞huiðx;tÞujðxþr;tþτÞieιfτdτ is the

cross spectrum and EiðfÞ¼
R∞
−∞huiðx;tÞuiðx;tþτÞieιfτdτ

the one point spectrum of the ith component. Coherence
may refer to different velocity components. We denote in
particular longitudinal (respectively transverse) coherence
function with i ¼ j and the velocity component parallel
(respectively perpendicular) to r.
In the context of turbulent atmospheric boundary layer, a

few field experiments and modeling approaches have been
devoted to the study of coherence [6–11] to estimate power
load fluctuations in wind turbine farms [12,13] or to
evaluate large scale constraints on bridges [14] and build-
ings [15]. The coherence function is, however, still poorly
documented, with measurements only in the context of the
turbulent atmospheric boundary layer and turbulent wakes.
Despite Cðr; fÞ being a standard quantity in signal

analysis, it has been rarely used for turbulent data even
though it provides additional information about two-point
correlation functions at equal time to which it is related but
not in a simple way.
In this Letter, we investigate the behavior of coherence in

two controlled laboratory experiments that we design to
either vary the typical timescale or length scale of the flow.
In both setups, we also achieve a large separation of length
scale between the size of the experimental domain and the
integral length scale l0.
Experimental setup and results.—The first experimental

setup is sketched in Fig 1(a). Four pairs of helices are
mounted on vertical bars immersed in a cubical tank of size
15 cm. Set in rotation by loop-controlled motors at an
angular velocity Ω, the helices force the flow directly in the
bulk. The four axes are rotated in a clockwise direction and
Ω ranges from 0 to 3200 rpm. In order to obtain full optical
access, we implement an index matching technique. We 3D
print the helices in a transparent resin (Nano Clear) of
refractive index n ¼ 1.51, and we match the resin refractive
index by using a liquid mixture of 62% in volume of anise
oil and 38% in volume of mineral oil. As suggested by
Song et al. [16], the anise and mineral oil mixture is
particularly suitable for optical measurements of flows as a
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highly transparent, low viscosity (ν ¼ 4.5 cP for 62% anise
oil) fluid. We perform optical velocity measurements using
both laser Doppler anemometry and particle image veloc-
imetry (PIV). The laser Doppler anemometry apparatus,
composed of a precalibrated Dantec system, is used to
characterize the local properties of the flow at small scale,
while the PIV is used to study the large scale spatiotemporal
fluctuations. The PIV is performed on vertical planes using
a high-speed camera and a continuous 2 W laser of
wavelength 532 nm. Using a combination of two spherical
lenses and two cylindrical lenses, we obtain a vertical
laser sheet with a tunable angle of divergence and a
thickness of 500 μm in the tank. Particles of diameter

30� 10 μm are seeded in the flow, and the velocity field is
reconstructed from the images using a free PIV algorithm
[17]. Figure 1(b) shows the map of the two dimensional

root mean squared velocity utotrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðurms

x Þ2 þ ðurms
y Þ2

q

averaged over time. The blue arrow indicated the direction
of the mean flow, showing the stagnation point at the center
of the tank. This mean flow is, however, smaller than the
velocity fluctuations in the region of interest. The rms of
velocity fluctuations urms along x and y varies linearly with
the rotation rate [Fig. 1(c)]. The correlation length of
velocity fluctuations is computed using the two-point
spatial correlation at equal time, which displays an expo-
nential decay with a characteristic length defined as the
integral length scale l0. The integral length scale is
measured to be independent of Ω (Fig. 1(c) inset) for
the range of rotation rates studied with l0 ¼ 6� 1 mm
being significantly smaller than the box size. We measure
the mean energy injection rate per unit mass hϵi from
the power required by the motors to maintain the flow.
We find that hϵi ∝ Ω3 [Fig. 1(d)], which confirms that we
reach the large scale scaling at high Reynolds number
hϵi ¼ Cϵu3rms=l0 with the dimensionless constant Cϵ ¼ 0.4
[18,19]. The rms of one velocity component is denoted
by urms, whose scaling can also be recovered from dimen-
sional arguments in the limit of high Reynolds number.
Eventually, we estimate the Taylor Reynolds number
Reλ ¼ urmsλ=ν, where λ is the Taylor microscale associated
to the correlation length of velocity gradients, which can be
estimated from urms and the dissipation rate, equal to the
mean injection rate hϵi in a statistically stationary regime.
For the highest rotation speed, we achieve a Taylor
Reynolds number Reλ ≈ 100 and λ ≈ 1 mm.
We focus on the large scale behavior corresponding to r

of the order or larger than l0. Unless otherwise stated,
measurements are reported for r=l0 ≥ 0.27. Figure 2 shows
coherence for the longitudinal component of the velocity as

FIG. 1. (a) Sketch of the experimental setup composed of 8
helices mounted on four vertical bars (R and L stand for right and
left chirality). The velocity field is measured in the central xy
plane using the PIV technique. (b) 2D map of the magnitude of
velocity fluctuations urms. The blue arrows indicate the local
direction of the mean flow, which evidence the stagnation point at
the center. The positions of the vertical bars are indicated in red.
(c) rms of velocity fluctuation along x (Squared box) and along y
(Circle). Inset: longitudinal integral length scale l0 along x
(Squared box) and y (Circle). (d) Global mean energy injection
rate per unit mass hϵi evaluated from the motor power con-
sumption.
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FIG. 2. Coherence as a function of frequency measured forΩ ¼
3200 rpm at two spatial distances: r=l0 ¼ 0.27 (blue line) and
r=l0 ¼ 1.36 (yellow line).
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a function of frequency for two different values of distance
r at Ω ¼ 3200 rpm. We observe an exponential decay
C ¼ C0ðrÞ expð−f=fcÞ, where f−1c is the decay rate in
frequency and C0 the coherence at zero frequency. Both C0
and fc are observed to decay with r. Their values are
evaluated from the least rms error exponential fit of C from
1 to the noise level at large frequencies. The decay of C0
with r=l0 is shown in Fig. 3(a), each curve corresponding to
a different value of Ω. We find an exponential decay of C0
with a characteristic length scale proportional to the integral
length scale l0.
These measurements imply that C0 ¼ expð−c1r=l0Þ.

Further analysis on the frequency dependence of coherence
reveals fc ¼ c2urms=r, where urms is the rms of the
longitudinal component of velocity. This can be seen in
Fig. 3(b), where coherence normalized by its value at
zero frequency is plotted against normalized frequency
rf=urms for two different values of r and of Ω. The
four curves lie within a single master curve. The exper-
imentally observed behavior of coherence is hence of the
form

Cðr; fÞ ¼ expð−c1r=l0Þ expð−c2rf=urmsÞ; ð2Þ

with c1 ¼ 0.54 and c2 ¼ 2.5, valid for r=l0 ≥ 0.27. This
functional form remains valid for the transverse component
of velocity.
In this first experiment, however, the integral length scale

does not vary significantly. To further check the relation
C0 ¼ expð−r=l0Þ, we design a second experiment where a
turbulent flow is generated in air between two square walls
(length 1 m) of counter-rotating staggered fans. A sketch of
the setup is shown in Fig. 4(a). This configuration creates a
Roberts-like turbulent flow [20] between the two walls. We
use two 1D hot-wire probes using constant temperature
anemometry technique to measure the two-point spatio-
temporal quantities of speed fluctuations near the center.
We vary the distance between the walls from 20 to 80 cm,
which modifies the integral scale l0 of the flow from 1.5 to
3.5 cm. Concomitantly, the rms of velocity fluctuations urms
ranges from 0.1 to 0.5 m=s. We get a maximum Taylor

FIG. 3. (a) Coherence at zero frequency C0 as a function of the
dimensionless distance r=l0. (b) Normalized coherence C=C0 as a
function of the dimensionless frequency rf=urms.

FIG. 4. (a) Sketch of the experimental setup of two walls of
counter-rotating staggered fans. Each wall is fitted with 36 fans.
(b) Normalized coherence C=C0 as a function of rf=urms. Inset:
coherence C0 at zero frequency as a function of the dimensionless
distance r=l0. C=C0 and C0 exhibit exponential decay, respec-
tively, in rf=urms and r=l0.
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Reynolds number Reλ ≈ 100 for the minimum wall
distance, corresponding to an integral length scale
l0 ∼Oð1Þ cm. The coherence C in this setup also exhibits
an exponential decay of the form given by Eq. (2), as shown
in Fig. 4(b), with c1 ¼ 0.84 and c2 ¼ 1.1. The value of c1 is
found to be similar between the two experiments. The value
of c2 is likely underestimated in the second experiment due
to the hot-wire technique, which evaluates the speed of the
sum of longitudinal and one transverse velocity component
instead of the longitudinal velocity. The two experimental
configurations confirm the functional form of C of Eq. (2)
and in particular the dependency on the integral length
scale l0 that can here be varied.
Physical interpretation.—In a homogeneous flow, coher-

ence is an even function of r. Assuming that viscous effects
render the flow properties smooth at small enough dis-
tances, coherence is expected to be quadratic in r at small r.
By definition it is equal to 1 at r ¼ 0. Tobin and Chamorro
[21] used the random sweeping hypothesis as formulated
by Tennekes [22] and Kraichnan [23] to model the
phase fluctuations of velocity cross spectrum in the
presence of a mean flow. In the limit of large mean flow
U compared to the velocity fluctuations, they predicted
Cðr; fÞ ∝ expð−cr2f2=U2Þ. For non-negligible velocity
fluctuations compared to the mean velocity, there is no
prediction for the behavior of coherence. Though, in the
context of spatiotemporal correlation function of temper-
ature fluctuations in Rayleigh Bénard convection, an
elliptic approximation has been developed using Taylor
hypothesis [24,25]. The experiments that we report here are
designed to study the behavior for r ≥ l0. Our results at
small r are compatible with a quadratic behavior, but
even for r=l0 of the order of 1=4 we observe that
the frequency dependence of coherence has the form
Cðr; fÞ ∝ expð−crf=urmsÞ, thus decaying slower than the
prediction from the random sweeping hypothesis.
An exponential decay in coherence implies that the

relation between coherence at r and rþ Δ is given by
Cðrþ Δ; fÞ ¼ Cðr; fÞgðΔÞ, where g is a function that only
depends on the separation distance Delta. In other
words, such a behavior implies a memoryless process
for coherence. It is interesting to note that a similar
behavior is observed in the context of temporal correlation
for Markovian process, though no direct relation
exists between the two. The local functional relation on
Cðrþ Δ; fÞ leads to the existence of a spatial correlation
length Γ−1, characterizing the exponential decay of the
form Cðr; fÞ ∝ exp ð−ΓrÞ. Our measurements show that

Γ ¼ c1f
urms

þ c2
l0
: ð3Þ

This exponential behavior of the coherence takes place at
separation distance r not too small, i.e., when the sweeping
effect of the turbulent fluctuations has lost its coherence.

The form of the correlation length Γ−1 interpolates between
the injection length scale at small f and urms=f at large f.
We note that among the different empirical models

introduced for coherence in turbulent atmospheric boun-
dary layers, an exponential decay in the vertical coordinate
is usually considered with a prefactor that depends on
frequency. This is, for instance, the case of the Davenport
model as later refined by Thresher et al. Cðz; fÞ ∝
expð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðzf=UÞ2 þ ðbz=LÞ2Þ

p
[6,7,9], with U the hori-

zontal mean flow velocity, L a characteristic length, and a
and b numerical constants. The asymptotic behavior at
small or large f is similar to our results of Eq. (2) even
though the contexts are different: specific role played by the
vertical coordinate, presence of a strong mean flow that
renders Taylor’s hypothesis valid, and the consideration of
only the inertial scales.
Conclusion.—We have shown experimentally that at

scales larger than a fraction of the integral scale (for
r=l0 ≥ 0.27), the coherence of the velocity in a turbulent
flow decays exponentially in frequency and in space with a
decay rate of the form of Eq. (3). Being observed in two
different experimental setups, we believe that our obser-
vations are generic to the large scales of turbulent flows.
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