
Active Frequency Measurement on Superradiant Strontium Clock Transitions

Yuan Zhang ,1,* Chongxin Shan,1,† and Klaus Mølmer 2,‡
1Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics Ministry of Education,

School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
2Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University,

Ny Munkegade 120, DK-8000 Aarhus C, Denmark and Aarhus Institute of Advanced Studies, Aarhus University,
Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark

(Received 25 June 2021; accepted 13 December 2021; published 7 January 2022)

We develop a stochastic mean-field theory to describe active frequency measurements of pulsed
superradiant emission, studied in a recent experiment with strontium-87 atoms trapped in an optical lattice
inside an optical cavity [M. Norcia et al., Phys. Rev. X 8, 021036 (2018)]. Our theory reveals the intriguing
dynamics of atomic ensembles with multiple transition frequencies, and it reproduces the superradiant
beats signal, noisy power spectra, and frequency uncertainty in remarkable agreement with the experi-
ments. Moreover, using longer superradiant pulses of similar strength and shortening the experimental duty

cycle, we predict a short-term frequency uncertainty 7 × 10−17=
ffiffiffiffiffiffiffi
τ=s

p
, which makes active frequency

measurements with superradiant transitions comparable with the record performance of current frequency
standards [M. Schioppo et al., Nat. Photonics 11, 48 (2017)]. Our theory combines cavity quantum
electrodynamics and quantum measurement theory, and it can be readily applied to explore conditional
quantum dynamics and describe frequency measurements for other processes such as steady-state
superradiance and superradiant Raman lasing.

DOI: 10.1103/PhysRevLett.128.013604

Introduction.—Optical clocks possess superior precision
and accuracy compared to their counterparts in the micro-
wave domain [1]. The pursuit of optical clocks follows two
paths with either single trapped ions, which allow long
interrogation time and achieve impressive frequency res-
olution [2], or ensembles of neutral alkaline-earth atoms,
which can provide a better signal-to-noise ratio and can be
also trapped in optical lattices to reduce the Doppler
broadening [3]. Beyond quantum metrology [4], trapped
ions and alkaline-earth atoms are also useful for the
exploration of quantum computing [5] and simulation, as
well as many-body spin physics [6,7].
Most optical clocks are based on a passive scheme [1],

where a driving field excites atoms and its frequency is
matched to the atomic transition frequency by monitoring
the atomic population dynamics via fluorescence detection.
Alternatively, in an active scheme, the atomic transition
frequency is measured by comparing the emitted signal
with a reference laser. While the passive scheme has
superior long-term stability and absolute accuracy, the
active scheme offers a wide detection bandwidth and
dynamical range. The active scheme has been implemented
in the microwave domain with hydrogen masers [8].
Recently, M. Norcia et al. [9] demonstrated active fre-
quency measurements of pulsed superradiance of strontium
atoms on the optical clock transition in the optical domain.
The system studied in [9] consists of more than 105

strontium-87 atoms trapped in a one-dimensional optical

lattice inside an optical cavity; see Fig. 1(a). The 87Sr atoms
have nuclear spin F ¼ 9=2, and subject to a magnetic field,
the hyper-fine levels of the electronic ground 1S0 and
excited state 3P0 are Zeeman split and give rise to a number
of σ� and π transitions; see Fig. 1(b). The atoms couple to a
cavity mode with vertical polarization via the π transitions,
which can be labeled with the quantum number
mF ¼ −F;−F þ 1;…; F.
The procedure adopted in [9] [Fig. 1(a)] can be sum-

marized as follows: (i) the atoms are initially prepared in a
mixture of different sublevels of the ground state with

(a) (b)

FIG. 1. Panel (a) shows an ensemble of lattice trapped 87Sr
atoms in a cavity, which are subject to a magnetic field and
heterodyne detection by photon counting on the beam mixing the
superradiance from the cavity (horizontal fat red arrow) and a
reference laser (vertical long blue arrow). Panel (b) shows hyper-
fine levels labeled by mF ¼ −F;−F þ 1;…F (F ¼ 9=2) of the
electronic ground 1S0 and excited 3P0 states and three kinds of
transitions: σþ; π; σ− (with ΔmF ¼ þ1; 0;−1). By defining the
quantization axis with a vertical magnetic field, the cavity mode
with vertical polarization couples only to the atomic π transitions.
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proper laser pulse sequences; (ii) a laser pulse drives the
cavity to excite the atoms; (iii) the excited atoms interact
collectively with the cavity mode resulting in pulsed
superradiance; (iv) the superradiance signal interferes with
a reference laser and is measured with a photo detector;
(v) the Fourier transform of the photo current leads to the
power spectral intensity, from which the atomic transition
frequencies are inferred. Following this procedure, a
frequency uncertainty of 6.7 × 10−16 is achieved after
one second of integration time [9]. We note that in [10],
the initial atomic excitation is realized by chirped adiabatic
passage. Since the superradiance is much faster than the
individual atom decay via σ� and π transitions, the number
of atoms contributing to each superradiant π transition does
not change during the experiment and the whole atom
ensemble can be viewed as ten separate subensembles with
different transition frequencies.
In this Letter, we apply a mean-field approach based on

cumulant expansions to describe cavity quantum electro-
dynamics (QED) theory with many emitters [11,12], and
we develop this theory further to incorporate the stochastic
measurement back action due to the continuous probing
of the system, which has so far been restricted to small
systems, via stochastic master equations [13]. While
applied here to high precision frequency measurement,
our theory reveals how to generally incorporate measure-
ment back action in systematic mean-field theories and
holds potential for exploration of a range of quantum
measurement effects in many-body systems and large
systems, intractable by usual master equation approaches.
Our simulations show that the frequency uncertainty can
be reduced by 1 to 2 orders of magnitude by using
longer superradiance pulses of similar strength and by
reducing the time for single measurements. The optimized
uncertainty becomes comparable with the current record
6 × 10−17 at one second [14].
Stochastic master equation for conditional dynamics.—

In the following, we present the stochastic master equation
for the conditioned density operator ρ̂:

∂
∂t ρ̂ ¼

� ∂
∂t ρ̂

�
p
þ
� ∂
∂t ρ̂

�
s
þ
� ∂
∂t ρ̂

�
d
: ð1Þ

The first term,

� ∂
∂t ρ̂

�
p
¼−

i
ℏ
½ĤcþĤd; ρ̂�−

κ

2
ðfâþâ; ρ̂g−2â ρ̂ âþÞ; ð2Þ

specifies the cavity mode Hamiltonian Ĥc ¼ ℏωcâþâ
with frequency ωc, photon creation âþ and annihilation
operator â, and the driving of the cavity mode Ĥd ¼ffiffiffiffiffi
κ1

p
ℏβðtÞeiωdtâþ H:c: by a laser pulse with a frequencyωd

and a time-dependent strength βðtÞ through the left mirror.
The remaining term describes the photon loss with a rate

κ ¼ κ1 þ κ2 due to the left (κ1 ¼ 2π × 72.5 kHz) and right
(κ2 ¼ κ1) mirror.
The second part of Eq. (1),

� ∂
∂t ρ̂

�
s
¼ −

i
ℏ
½Ĥa þ Ĥa−c; ρ̂�; ð3Þ

specifies the Hamiltonian Ĥa ¼ ℏ
P

10
i¼1ðωi=2Þ

PNi
k¼1 σ̂

z
i;k

of ten subensembles (indicated by “i ¼ mF”) of Ni atoms
(labeled with “k”), associated with the ten π transitions of
frequencies ωi¼mF

¼ ωa þ ΔBmF and Pauli operator σ̂zi;k.
ωi¼mF

are given by the intrinsic atomic transition frequency
ωa=2π ¼ 429.5 THz (corresponding to a wavelength of
698 nm) and the constant ΔB ¼ 2π × 108.4 × B Hz for
the static magnetic field B in Gauss [9]. The Hamiltonian
Ĥa−c ¼ ℏ

P
i gi½âþð

P
k σ̂

−
i;kÞ þ ðPk σ̂

þ
i;kÞâ� describes the

atom-cavity mode coupling with the lowering σ̂−i;k
and raising σ̂þi;k operators and the strengths gi¼mF

¼
g0mF=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðF þ 1Þp

(with g0 ¼ 2π × 2.41 Hz). Here, we
assume that all the atoms in the ith subensemble have
the same ωi and gi, and we have ignored the negligible
spontaneous emission rate and dephasing rate in the optical
lattice clock system.
The third part of Eq. (1) describes the measurement back

action due to the heterodyne detection:
� ∂
∂t ρ̂

�
d
¼dW

dt
ffiffiffiffiffiffiffi
ηκ2

p ½eiωltðâ−hâiÞρ̂þ ρ̂e−iωltðâþ−hâi�Þ�:

ð4Þ
Here, the random number dW describes the detector
photon-shot noise and follows a normal distribution with
a variance dWðtÞ2 ¼ dt and a mean E½dWðtÞ� ¼ 0. The
parameter η accounts for the photo-counting efficiency of
the detector. In the heterodyne detection, the signal beam
from the cavity is mixed with a local oscillator of frequency
ωl on a single photodetector [Fig. 1(a)], and a large
constant signal component due to the local oscillator
intensity is subtracted to reveal the interference term, linear
in cavity field amplitude hâi,

JðtÞ ¼ ffiffiffiffiffiffiffi
ηκ2

p
2Re½eiωlthâi� þ dW=dt; ð5Þ

which is dominated by the detector photon-shot noise
dW=dt. The derivation of Eqs. (4) and (5) is presented,
e.g., in Sec. 4.4 and Sec. 4.5 of [13].
To simulate tens of thousands of atoms in the experi-

ments and to account properly for the collective atom-
cavity mode interaction, we solve Eq. (1) with second-order
mean-field theory [12,15], equivalent to the cluster expan-
sion approach [16], by deriving the equation ∂thôi ¼
trfô∂tρ̂g for the expectation value hôi of any observable
ô. Following this procedure, we obtain the equation for the
intra-cavity photon number:
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∂
∂t hâ

þâi ¼ −2
ffiffiffiffiffi
κ1

p
Im½βðtÞeiωdthâi�

− κhâþâi− 2
X
i

giNiImhâσ̂þi i

þ dW
dt

ffiffiffiffiffiffiffi
ηκ2

p
2Re½e−iωltðhâþâþâi− hâi�hâþâiÞ�;

ð6Þ

which depends on the cavity field amplitude hâi, the atom-
photon correlation hâσ̂þi i, and higher order correlations
hâþâþâi. To close the equations, we approximate the third-
order correlations hô p̂ q̂i with lower-order correlations
hôihp̂ q̂i þ hp̂ihô q̂i þ hq̂ihô p̂i − 2hôihp̂ihq̂i (for any
operators ô; p̂; q̂) [11]. The cavity field amplitude then
obeys the equation

∂
∂t hâi ¼ −iðωc − iκ=2Þhâi− i

ffiffiffiffiffi
κ1

p
β�ðtÞe−iωdt

− i
X
i

giNihσ̂−i i þ
dW
dt

ffiffiffiffiffiffiffi
ηκ2

p ½e−iωltðhâþâi− jhâij2Þ

þ eiωltðhâ2i− hâi2Þ�: ð7Þ

The equations for hâσ̂þi i and other terms, e.g., the atomic
population difference hσ̂zi i and coherence hσ̂−i i, are detailed
in Sec. S1 of [17]. In the above equations and those in
Sec. S1, we assume all the atoms identical so that the sum
of the identical quantities like hâσ̂þi;ki; hσ̂−i;kσ̂þi;k0 i; hσ̂−i;kσ̂þj;k0 i
(with k ≠ k0) for any atom k and any atomic pair (k, k0) can
be replaced by the product of representative quantities, e.g.,
hâσ̂þi i; hσ̂−i σ̂þi i; hσ̂−i σ̂þj iwith factors, e.g., Ni; Ni − 1; Nj. In
this way, we reduce dramatically the number of indepen-
dent quantities.
Frequency measurement using superradiance pulses.—

We apply the above stochastic mean-field equations to

simulate the frequency measurements on the pulsed super-
radiance, as reported in [9]. To obtain Fig. 2, we assume
ωc ¼ ωa and a magnetic field of about 1.537 Gauss,
resulting in ten π transitions with frequencies
ω�9=2;�7=2;�5=2;�3=2;�1=2=2π ¼ ωa=2π � 750.00, 583.33,
416.67, 250.00, 83.33 Hz. We drive the cavity resonantly
(ωd ¼ ωc) by a square laser pulse of a duration T ¼
11.5 ms and a coupling strength βðtÞ ¼ 2π × 7.5 × 103ffiffiffiffiffiffi
Hz

p
, and we then switch on the heterodyne detection with

a local oscillator of frequency ωl ¼ ωc þ 2π kHz and a
detection efficiency η ¼ 0.12 [9].
Figure 2(a) shows that the intra-cavity photon number

increases dramatically and oscillates around 4850 when the
driving laser is on, drops dramatically when it is off, and
finally yields a complex beat pattern, in good agreement
with Fig. 2(c) in [9]. Figure 2(b) shows that the population
difference hσ̂zmF

i of different subensembles follows oscil-
lations of different periods in the preparation stage (0 to
11.5 ms) and then decays monotonically with small ripples
in the superradiant stage (11.5 to 70 ms).
These results can be understood by noting that for a laser

pulse with amplitude
ffiffiffiffiffi
κ1

p
β ≫ κ, the field inside the cavity

behaves like a classical field with an amplitude hâi ≈
i2

ffiffiffiffiffi
κ1

p
β=κ (for ωc ¼ ωd). Such a classical field would drive

the atoms to follow the Rabi oscillations, and the population
difference is given by hσ̂zmF

i ¼ 2Pmax
e sin2 ðjmFjΩ0T=2Þ − 1

with Pmax
e ¼ j2hâig0=Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðF þ 1Þp j2 and Ω0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
B þ j2hâig0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðF þ 1Þp j2

q
, which are both indepen-

dent of mF; see Sec. S2 B of [17]. The Rabi frequencies
jmFjΩ0 lead to faster oscillation of hσ̂zmF

i for larger jmFj and
same population at integer multiples of the period 2π=Ω0.
For the current system, we estimate jhaij ≈ 70 and
Ω0 ≈ 2π × 180 Hz and calculate Pmax

e ≈ 0.142 and then
2Pmax

e − 1 ≈ −0.72, close to the maximal hσ̂zmF
i shown in

Fig. 2(b). Here, the low atomic excitation is mostly because
the atomic subensembles are off-resonant with the cavity
field. To reproduce the superradiant pattern in the experiment
[9], we choose T such that hσ̂zmF

i decreases with reducing
jmFj; see the curve crossings with the vertical line in
Fig. 2(b). In the superradiant stage, hσ̂zmF

i decays
faster for the subensembles with larger jmFj, reflecting
the larger Purcell enhanced atomic decay rate ΓmF

¼
½mFg0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðF þ 1Þp �2ðκ=2Þ=½m2

FΔ2
B þ κ2=4� for larger

jmFj (notice jmFjΔB ≪ κ=2). In addition, it also shows
small steps caused by the constructive and destructive
interference between the atomic subensembles (not shown).
The heterodyne detection yields a fluctuating photon

current (see Sec. S2 A of [17]), and the Fourier transform
of this signal yields a power spectral density with eight
peaks, which are fitted by Lorentzian functions with the
frequencies ðωmF

−ωaÞ=2π¼−750.60;−582.53;−416.41;
−251.76Hz formF¼−9=2;…;−3=2 and ðωmF

−ωaÞ=2π¼
250.61, 415.69, 582.91, 749.53 Hz for mF ¼ 3=2;…; 9=2;

(a) (b)

FIG. 2. Preparation, superradiance, and heterodyne detection of
4 × 105 87Sr atoms evenly distributed over ten transitions with
mF ¼ �9=2;…;�1=2. Panels (a) and (b) show the intra-cavity
photon number and population difference among the excited and
ground states for each mF. The inset in panel (a) shows the
simulated power spectral density (black noisy curve) and
Lorentzian fits to the spectral peaks (red solid curves). The
simulation parameters are specified in the text.
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see the inset of Fig. 2(a). The transitions mF ¼ �1=2 with
frequencies ω�1=2 couple too weakly with the cavity mode
to be resolved. The difference between the extracted and
expected frequencies is caused by the detection noise and
contributes to the frequency uncertainty (see below).
Uncertainty of the frequency measurement.—So far, we

consider atoms distributed over all the π transitions. It may
be better to distribute the atoms only to the two extreme
transitions mF ¼ �9=2 since they couple more strongly
with the cavity mode and provide also two symmetrically
separated peaks in the power spectral density, which are
sufficient to determine the intrinsic atomic transition
frequency. Figure 3 demonstrates the frequency measure-
ment for such a system with 1.8 × 105 87Sr atoms, a
magnetic field of 0.943 Gauss, resulting in the transition
frequencies ω�9=2=2π ¼ ωa=2π � 460 Hz, and a laser

pulse of a strength βðtÞ ¼ 2π × 5 × 103
ffiffiffiffiffiffi
Hz

p
and a

duration 8.8 ms. Figure 3(a) shows similar results as
Fig. 2(a) except for simpler beats signal and two peaks
in the power spectral density, which are consistent with
Fig. 2(b) in [9]. The extracted frequencies of the two peaks
are ðω−9=2;9=2 − ωaÞ=2π ¼ −460.31, 459.91 Hz and devi-
ate from the expected values by 0.31 Hz and 0.09 Hz.
The uncertainty of the frequency measurement as a

function of the total duration τ of the experiment is
characterized by the so-called fractional Allan deviation
σðτÞ [1]. To compute this quantity, let us assume that we
need the time Tc to carry out a single experiment, e.g.,

Tc ¼ 1.1 s in [9], and that we have carried out N experi-
ments to yield N candidate frequencies ω̄n. Then, σðτÞ for
the probing time τ ¼ Tc can be evaluated with σðτÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1=ðN − 1Þ�PN−1

n¼1 ðω̄nþ1 − ω̄nÞ2=ð2ω2
aÞ

p
. Consistent with

the experiment [9], we consider the average ofm frequencies
(m < N=2) as the frequency measured with a single experi-
ment of total duration τ ¼ mTc, and we thus obtain N=m
average frequencies by which we compute σðτÞ for
τ ¼ mTc. This treatment leads to a precise estimate of
σðτÞ for short τ, while the smaller sample size available for
longer τ makes the estimate of σðτÞ correspondingly less
precise. This feature of σðτÞ is also visible in Fig. 3(a) of [9].
Figure 3(b) shows the computed σðτÞ for the center

frequency ωcen ¼ ðω9=2 þ ω−9=2Þ=2 (red asterisks) and the
frequency difference ωdif ¼ ðω9=2 − ω−9=2Þ=2 (blue dots).

For ωcen, σðτÞ can be fitted with 9.06 × 10−16=
ffiffiffiffiffiffiffi
τ=s

p
in

good agreement with the measured value σðτÞ ¼ 1.04 ×
10−15=

ffiffiffiffiffiffiffi
τ=s

p
[9]. However, for ωdif, σðτÞ can be fitted with

9.75 × 10−16=
ffiffiffiffiffiffiffi
τ=s

p
, which is about 2 times larger than the

measured value σðτÞ ¼ 4.5 × 10−16=
ffiffiffiffiffiffiffi
τ=s

p
in [9]. The

photon-shot noise should in principle lead to the same
uncertainty for ωcen and ωdif , while the larger uncertainty
for ωcen than ωdif in the experiment may be caused by other
processes affecting the two superradiant peaks in the same
manner, such as noise of the reference laser, cavity pulling
effects, and shifts associated with the atomic density, as
pointed out in [9]. In view of the possible variations of
many parameters in separate experiments, such as the
atomic numbers, the driving field, and the reference laser,
the agreement of the measured and calculated σðτÞ is quite
remarkable. In particular, we note that it was mentioned in
[9] that superradiant pulses with lengths ≤ 100 ms were
used for σðτÞ estimation, while the pulses are only 40 ms
long in our simulations. Based on this observation, we may
assume that our simulations yield the same or upper bound
of the Allan deviation of the frequency measurements.
To optimize the frequency measurement, we notice that

the duration of the superradiant pulse is inversely propor-
tional to the number of atoms N [10] and can be affected
by the atomic initial states and the magnetic field; see
Sec. S2 B in [17]. Thus, by reducing N to 9 × 104 and
assuming a smaller Zeeman splitting for the transition
frequencies, ω�9=2 ¼ ωa � 2π × 50 Hz, and using a rec-

tangle laser pulse of strength βðtÞ ¼ 2π × 104
ffiffiffiffiffiffi
Hz

p
and

shorter duration T ¼ 1.1 ms, we can prepare the atoms
with more than 97% population in the excited state and
obtain a 300 ms long superradiant-beat signal of similar
strength, leading to two frequency peaks; see Sec. S2 C of
[17]. These peaks lead to σðτÞ ¼ 1.44; 1.29 × 10−16=

ffiffiffiffiffiffiffi
τ=s

p
for ωcen and ωdif , respectively; see the rightmost red solid
and blue dashed lines in Fig. 3(b).
Before we can achieve the predicted σðτÞ, we must

address two obstacles. In the experiment [9], the reference

(a) (b)

FIG. 3. Frequency measurement on pulsed superradiance from
1.8 × 105 87Sr atoms distributed evenly on the two extrememF ¼
�9=2 atomic transitions. Panel (a) shows similar results as
Fig. 2(a). Panel (b) shows the fractional Allan deviation σðτÞ
for the center (red asterisks) and difference (blue dots) of the peak
frequencies ω�9=2. The mean and standard deviation are obtained
by averaging the frequencies over 3 × 40 independent simula-
tions, each lasting for Tc ¼ 1.1 s [9]. The upper asterisks and
dots are for the system considered in panel (a), while the lower
ones are for optimized system parameters giving longer super-
radiance pulses of similar strength. The results of the fitting of
these data (red solid and blue dashed lines) are explained in the
text. The leftmost pairs of red solid and blue dashed lines show
the results for Tc ¼ 0.5 and 0.25 s. The horizontal dotted line
shows the noise floor 10−16 of the reference laser used in [9].
Other parameters are specified in the text.
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laser is stabilized with a high-quality optical cavity, which
has a thermal noise floor of 1 × 10−16 [see the horizontal
dashed line in Fig. 3(b)], and the atoms are lost during
single measurement and new atoms must be reloaded into
the cavity for a new experiment, which leads to the total
time Tc ¼ 1.1 s or longer for a single experiment. To
overcome these obstacles, we can reduce the noise level
of the reference laser by stabilizing it to an ultra high–
quality optical cavity, and we may compensate the
atom loss by continuously injecting new atoms [20]; see
Sec. S2 D in [17]. If we can reduce the time for single
experiments to, e.g., Tc ¼ 0.5 s or 0.25 s, σðτÞ can be
reduced to 9 × 10−17=

ffiffiffiffiffiffiffi
τ=s

p
or 7 × 10−17=

ffiffiffiffiffiffiffi
τ=s

p
, as indi-

cated with the leftmost pairs of blue dashed and red solid
lines in Fig. 3(b), which become comparable with the
record 6 × 10−17=

ffiffiffiffiffiffiffi
τ=s

p
[14].

In the above simulations, the atoms are initially prepared
in superposition states, leading to an initial atomic coher-
ence, hσ̂−i i ≠ 0. According to Eq. (7), this coherence feeds
the cavity field amplitude hâi ≠ 0 and drives the photon
current in the heterodyne detection [see Eq. (5)], allowing
us to detect the frequencies. In these simulations, the
randomness associated with the measurement yields the
noise in the detected signal, which determines the short-
term uncertainty of frequency measurement, while the
measurement back action does not affect the system
dynamics appreciably. However, for atoms prepared in
the fully excited state, there is no initial atomic coherence
and hence no mean optical coherence, but in every single
shot of the experiment, the measurement back action causes
a breaking of the symmetry to establish optical coherence
in the system and thus yields a modulated heterodyne
current; see Sec. S2 E of [17].
Conclusion.—In summary, we have combined the theory

of continuous quantum measurements and a mean-field
description of cavity QED with many emitters to simulate
heterodyne detection of pulsed superradiance from tens
of thousands of 87Sr atoms trapped in a one-dimensional
optical lattice inside an optical cavity. Our simulations
show that the computed frequency uncertainty decreases as
∼9 × 10−16=

ffiffiffiffiffiffiffi
τ=s

p
with the measurement time τ, in agree-

ment with the recent experiment [9]. By use of longer
superradiance pulses of similar strength and a shorter duty
cycle for single measurements, the frequency uncertainty
may be further reduced by 1 to 2 orders of magnitude and
thus become comparable with current records [14].
Our theory can be directly applied to the study of

frequency measurements on superradiant pulses from other
alkaline-earth atoms such as strontium-88 atoms [21,22]
and calcium atoms [23]. Steady-state superradiance [11]
and superradiant Raman lasers [24] may be subject to
similar analyses, which may also reveal more exotic effects
of quantum measurements such as conditional entangle-
ment and spin squeezing.
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