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We show there exist UV-complete field-theoretic models in general dimension, including 2þ 1, with the
spontaneous breaking of a global symmetry, which persists to the arbitrarily high temperatures. Our
example is a conformal vector model with the OðNÞ × Z2 symmetry at zero temperature. Using conformal
perturbation theory we establish Z2 symmetry is broken at finite temperature for N > 17. Similar to recent
constructions of [N. Chai et al., Phys. Rev. D 102, 065014 (2020)., N. Chai et al., Phys. Rev. Lett. 125,
131603 (2020).], in the infinite N limit our model has a nontrivial conformal manifold, a moduli space of
vacua, which gets deformed at finite temperature. Furthermore, in this regime the model admits a persistent
breaking of OðNÞ in 2þ 1 dimensions, therefore providing another example where the Coleman-
Hohenberg-Mermin-Wagner theorem can be bypassed.
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Introduction.—The phenomenon of spontaneous sym-
metry breaking is ubiquitous: many real systems as well as
field theoretic models exhibit spontaneous breaking of both
discrete and continuous symmetries at zero or sufficiently
small temperature. The conventional picture suggests the
full symmetry is restored for sufficiently high temperatures.
There are also situations when the low-temperature phase is
symmetric but symmetry is broken as the temperature
increases. In this case too one normally expects the
symmetry to be eventually restored for even higher temper-
atures, and there are seemingly many theoretical results
supporting such a conclusion. Yet as we discuss below they
rely on the stringent assumptions that can be evaded. Which
raises the question—is spontaneous breaking that persists
to arbitrarily high temperatures possible? In this Letter
we answer this question by constructing UV-complete
field-theoretical models in diverse dimensions which
exhibit persistent breaking of both discrete and continuous
symmetries.
For lattice systems it is well appreciated the symmetry is

restored for temperates large in comparison with the lattice
spacing [1]. This suggests in effective field theory sponta-
neous breaking is possible up to UV scale, as illustrated by
the UV-incomplete example of Ref. [2]. Yet the lattice-
based arguments are not applicable to UV-complete field
theoretic models, which we focus on. There is also the

famous Coleman-Hohenberg-Mermin-Wagner theorem
[3,4] and its generalizations, which rule out the possibility
of the longer range order at T ≠ 0 in a wide class of two-
dimensional d ¼ 2þ 1 systems. This seemingly prohibits
spontaneous breaking of a continuous symmetry, but here
too there are many assumptions and exceptions, starting
from the example of Ref. [5]. Importantly to what follows,
the original work [4] already notes the argument may break
down if the lattice model exhibits long-range interactions.
Thus, there is a phase transition in a Heisenberg magnet
with suitably adjusted long-range interactions, see, e.g.,
Ref. [6] for a recent review on the Coleman-Hohenberg-
Mermin-Wagner theorem and its limitations. This suggests
nonlocal field theories, which may result from such lattice
models in the continuous limit may be immune to various
no-go results.
To better illustrate this idea we briefly mention

Coleman’s no-go theorem [7], which in d ¼ 1þ 1 excludes
spontaneous symmetry breaking because the corresponding
Goldstone bosons, being massless, would have infrared
divergences. This argument works for the short-range
interactions, whereas as above introduction of the long-
range forces allows phase-transitions in the one-dimen-
sional systems [8–12]. The no-go results in various dimen-
sions are related and can be evaded simultaneously: Our
model exhibits persistent breaking for 1 < d < 3þ 1.
The discussion above mostly applies to continuous

symmetries. For discrete symmetries even less is known.
As for continuous symmetries, there is no universal
theoretical argument requiring discrete symmetry to be
restored at high temperatures. At the same time to the best
of our knowledge there were no examples of persis-
tent symmetry breaking in 2þ 1 dimensions. In higher
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dimensions there are CFTs in d ¼ 4 − ϵ [13–15] and d ¼ 4
[16,17] which have some of their internal symmetries
broken at arbitrary finite temperature. Yet these models
are not free of criticism. In the former case ϵ cannot be
taken to one and therefore theories in question are not
necessarily unitary [18]. And the latter case of [16] is
inconclusive because of the possible impact of 1=N
corrections. We also refer the reader to Ref. [19], where
asymptotically safe theories [20] in d ¼ 3þ 1 were con-
sidered in the context of persistent symmetry breaking.
Another idea explored in the literature is placing the theory
in a curved spacetime. Thus, the OðNÞ model in AdS
evades the Coleman-Hohenberg-Mermin-Wagner theorem
[21] but at high temperatures the symmetry is restored.
There are other AdS=CFT candidates of persistent order
[22–28] which are perturbatively stable, but the symmetric
phase has smaller free energy. (See Ref. [29] where the
holographic conformal order is studied on S3.) Other
nonunitary models of persistent breaking in the presence
of chemical potential include [30–35]. We should also
mention the renowned Berezinskii-Kosterlitz-Thouless
transition [36–38] as an example evading the Coleman-
Hohenberg-Mermin-Wagner theorem yet not leading to
persistent symmetry breaking.
The main goal of this Letter is to construct an example

which would be free of aforementioned deficiencies. Our
model is a conformal, and hence UV-complete vector
theory which breaks discrete symmetry at finite temper-
ature T. Because of scale invariance this breaking persists
to arbitrary high T. The result holds true in 2þ 1 and
extends to other 1 < d < 3þ 1 where the model is man-
ifestly stable (Stability suggests the model is unitary; it
would be interesting to confirm this by calculating anoma-
lous dimensions at the IR fixed point. We also expect the
fixed point to be a CFT, but since our model is nonlocal
strictly speaking this has to be verified along the lines [39].)
Generalizations of our model exhibit persistent breaking of
continuous symmetries in d ¼ 2þ 1 and beyond [40]. Our
construction bypasses the Coleman-Hohenberg-Mermin-
Wagner theorem due to its nonlocal nature. It can be viewed
as two weakly interacting copies of the long-range Ising
(LRI) model [8,41,42] (For original and recent studies of
the LRI model see Refs. [39,43–51].)
The model.—To begin with, we introduce our model.

Consider the following Gaussian action in 1 ≤ d < 4
dimensions,

S0 ¼ N ϕ

Z
ddx1

Z
ddx2

ϕ⃗ðx1Þ · ϕ⃗ðx2Þ
jx1 − x2j2ðd−ΔϕÞ

þN σ

Z
ddx1

Z
ddx2

σðx1Þσðx2Þ
jx1 − x2j2ðd−ΔσÞ : ð1Þ

The fundamental fields include scalars ϕ⃗ and σ trans-
forming in vector and singlet representations of OðNÞ. The

model also admits a Z2 symmetry that flips the sign of σ.
The coefficientsN ϕ andN σ are fixed so that the two-point

functions of ϕ⃗ and σ are canonically normalized. For
brevity we suppress vector indices in what follows. The
scaling dimensions of the generalized free fields are chosen
to be

Δϕ ¼ d − ϵ1
4

; Δσ ¼
d − ϵ3
4

; ð2Þ

with ϵ1;3 ≪ 1, so that the following quartic operators
become weakly relevant

O1 ¼ ðϕ2Þ2; O2 ¼ ϕ2σ2; O3 ¼ σ4; ð3Þ

with scaling dimensions Δ1¼4Δϕ, Δ2 ¼ 2ðΔϕ þ ΔσÞ, and
Δ3 ¼ 4Δσ. This model is conformal, we list OPE coeffi-
cients Ck

ij and other technical details in the Appendix.
Next, we consider the following deformation

S ¼ S0 þ
X3
i¼1

giμϵi

N

Z
ddxOiðxÞ; ð4Þ

where ϵi ≪ 1. [Note that ϵ2 ¼ ðϵ1 þ ϵ3Þ=2.] It induces an
RG flow of the form

μ
dgi
dμ

¼ −ϵigi þ
πd=2

NΓðd
2
Þ
X
j;k

Ci
jkgjgk þ… ð5Þ

As we argue below, for N > 10 there is a fixed point with
g2 < 0. Moreover, the IR CFTs with negative g2 are stable.
They define a class of theories with the persistent symmetry
breaking.
To understand the unbroken symmetries of the IR critical

point at finite temperature we consider the effective
potential Veff for the zero mode. To leading order in ϵi,
thermal fluctuations simply induce quadratic terms in
addition to the quartic potential (4),

Veffðϕ;σ;βÞ ¼MϕðβÞϕ2 þMσðβÞσ2

þ g1μϵ1

N
O1 þ

g2μϵ2

N
O2 þ

g3μϵ3

N
O3 þOðϵ2i Þ;

ð6Þ
where

MϕðβÞ ¼ 2
g1μϵ1

N

�
1þ 2

N

�
hϕ2iβ þ

g2μϵ2

N
hσ2iβ;

MσðβÞ ¼
g2μϵ2

N
hϕ2iβ þ 6

g3μϵ3

N
hσ2iβ: ð7Þ

As shown in the Appendix, thermal expectation values of
the generalized free fields are given by
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hϕ2iβ ¼ N
2ζð2ΔϕÞ
β2Δϕ

; hσ2iβ ¼
2ζð2ΔσÞ
β2Δσ

; ð8Þ

which follow straightforwardly from the thermal Green’s
function. Obviously, full OðNÞ × Z2 symmetry is pre-
served by the minimum of the potential at zero temperature.
However, the finite temperature effects might break it if
Mϕ < 0 or Mσ < 0. If this happens, the higher order
perturbative corrections cannot restore the symmetry,
because the higher loop contributions to Mϕ;Mσ are
suppressed by higher powers of ϵi, whereas the terms with
higher powers of fundamental fields are subdominant in the
vicinity of the origin. To establish symmetry breaking at
finite temperature, it is therefore sufficient to show that the
model admits a fixed point where one of the M’s becomes
negative.
To ensure stability of the model it is necessary to satisfy

g1, g3 ≥ 0, while g2 could be negative provided 4g1g3 ≥ g22.
If all gi are positive, Mϕ;Mσ are positive as well, the
potential is minimized at the origin ϕ ¼ σ ¼ 0 and the
symmetry is restored. The only scenario of symmetry
breaking is therefore when g2 < 0. The RG flow (5)
terminates at a weakly interacting IR fixed point in the
vicinity of the original Gaussian theory. At the critical point
at leading order in ϵi the couplings satisfy

ϵ1g1 ¼
πd=2

NΓðd
2
Þ ðC

1
11g

2
1 þ C1

22g
2
2Þ;

ϵ2g2 ¼
πd=2

NΓðd
2
Þ ð2C

2
12g1g2 þ C2

22g
2
2 þ 2C2

23g2g3Þ;

ϵ3g3 ¼
πd=2

NΓðd
2
Þ ðC

3
22g

2
2 þ C3

33g
2
3Þ: ð9Þ

There is always a trivial fixed point with g1¼ðΓðd=2Þ=
8πd=2ÞðN=Nþ8Þϵ1, g2¼0 and g3¼ðNΓðd=2Þ=72πd=2Þϵ3.
It represents two decoupled theories: the so-called long
range Ising model [39] and its OðNÞ generalization. This
fixed point was recently studied in, e.g., Ref. [51].
To simplify the analysis and illustrate the main idea in

what follows we consider only a particular case of equal
ϵi ¼ ϵ. The case of nonequal ϵi is similar and also admits
persistent symmetry breaking. It is also convenient to
rescale the couplings gi ¼ g̃iðΓðd=2Þ=πd=2Þϵi. Before pro-
ceeding with the case of finite N we take the infinite N
limit. In this case the equations (9) drastically simplify,
yielding the conformal manifold—a one-parameter family
of fixed points

g̃1 ¼
1

8
; g̃3 ¼ 2g̃22; ð10Þ

depicted in Fig. 1. For the negative branch g̃2 ¼ −2
ffiffiffiffiffiffiffiffiffi
g̃1g̃3

p
the effective potential degenerates into

Veffðϕ; σ; βÞ ¼
μϵ

N
ð2 ffiffiffiffiffi

g1
p hϕ2iβxþ x2Þ; ð11Þ

x ¼ ffiffiffiffiffi
g1

p
ϕ2 −

ffiffiffiffiffi
g3

p
σ2: ð12Þ

The minimum is reached at

σ2 ¼
ffiffiffiffiffi
g1
g3

r
ðϕ2 þ hϕ2iβÞ: ð13Þ

This is a one-dimensional family of vacua with the nonzero
expectation value of σ, signaling spontaneous symmetry
breaking. For positive g2 and hϕ2iβ only σ ¼ 0 is admitted.
From the discussion above it is clear negative g2 is

necessary for symmetry to be broken. Hence the crucial
question is if the fixed point(s) with g2 < 0 survive in the
finite N regime. Before proceeding with an arbitrary N we
employ 1=N expansion to find, in addition to Eq. (10), the
consistency condition

4g̃22 þ 2g̃2 −
3

4
¼ 0: ð14Þ

Hence at large but finite N the continuous family (10)
collapses into two solutions, one with positive and one with
negative g2. Upon taking finite N corrections into account,
degeneracy 4g1g3 ¼ g22 is lifted. Minimization of the
potential (6) yields

�
ϕ2

σ2

�
¼ −Nμ−ϵ

4g1g3 − g22

�
2g3 −g2
−g2 2g1

��
Mϕ

Mσ

�
; ð15Þ

provided resulting ϕ2 and σ2 both are positive. Yet this is
never the case for any solutions of Eq. (9). The true

−0.5 0.0 0.5
g2

0.2

0.4

0.6

0.8

1.0

1.2
g3

FIG. 1. Fixed points in the g2 − g3 plane. Orange line shows a
continuous family of solutions (10) emerging in the infinite N
approximation. Black dots are the asymptotic locations of fixed
points (14) in the limit of large N. Blue points are the solutions of
Eq. (9) for N ≤ 200.
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minimum of the potential is therefore achieved either at
ϕ2 ¼ 0 or σ2 ¼ 0. For all solutions of Eq. (9) Mϕ > 0 but
Mσ become negative for the branch with negative g2 and
N > 17. In these cases the minimum is achieved at

�
ϕ2

σ2

�
¼ −Nμ−ϵ

2g3

�
0

Mσ

�
: ð16Þ

At leading order in ϵ this value is correct at all temperatures,
as follows from the dimensional analysis. Clearly, σ2 is
strictly positive, indicating symmetry breaking.
Conclusions.—To summarize, the model (1) with the

choice ϵi ¼ ϵ ≪ 1 for finite N has two different IR fixed
points, and for N > 10 one of them has negative g2. The
fixed points with g2 < 0 and N > 17 exhibit symmetry
breaking at arbitrary nonzero temperature

OðNÞ × Z2 → OðNÞ: ð17Þ

The behavior for nonequal small ϵi is qualitatively similar.
The model (1) admits a straightforward generalization to

two Gaussian free fields in the vector representations of
OðN1Þ andOðN2Þ. The example in this note corresponds to
the N2 ¼ 1 case. Deforming this theory by weakly relevant
quartic operators and following the same steps as above,
one finds IR fixed points which exhibit spontaneous
breaking of the global continuous symmetry at finite
temperature. In 2þ 1 dimensions it is therefore an example
of persistent breaking of a continuous global symmetry,
which bypasses the Coleman-Hohenberg-Mermin-Wagner
theorem [3,4,7] by virtue of being a CFT with long-range
interactions. We will discuss this case in detail in Ref. [40].
Our nonlocal OðNÞ × Z2 model is similar to that one
studied in Refs. [13,14]. It would be also interesting to
explore if they are related in the large N limit.
Our findings clearly show persistent breaking is possible

in the UV complete yet nonlocal models. This raises the
question if nonlocality is truly necessary, i.e., if there could
be UV-complete unitary local field theoretic models in d ¼
2þ 1 exhibiting persistent breaking of discrete symmetries.
It is an important open question to construct such an
example or rule out this possibility.
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Appendix: Supplemental Material.—The action defines a
conformal model with the canonically normalized two-
point function of fundamental fields ϕ⃗ and σ,

hϕaϕbi ¼
δab

jx12j2Δϕ
; hσσi ¼ 1

jx12j2Δσ
: ðA1Þ

The two-point functions of the operators Oi (3)

hOiOji ¼ δij
Ni

jxj2Δi
; ðA2Þ

where

N1 ¼ 8N2

�
1þ 2

N

�
; N2 ¼ 4N; N3 ¼ 24: ðA3Þ

Similarly, the three-point functions

hOiOjOki ¼
Ck
ijNk

jx12jΔ−2Δk jx23jΔ−2Δi jx13jΔ−2Δj
;

Δ ¼ Δi þ Δj þ Δk; ðA4Þ

are fixed by the OPE coefficients (we list only nonzero
ones)

C1
11 ¼ 8ðNþ 8Þ; C1

22 ¼ 2; C2
12 ¼ 4ðNþ 2Þ;

C2
22 ¼ 16; C2

23 ¼ 12; C3
22 ¼ 2N; C3

33 ¼ 72: ðA5Þ

They are related by

Ck
ij ¼ Cj

ikNj=Nk: ðA6Þ

At finite temperature two-point function takes the form

hϕaϕbi ¼
X∞

m¼−∞

δab
½ðτ þmβÞ2 þ x⃗2�Δϕ

; ðA7Þ

and similarly for σ. From here one trivially finds Eq. (8).
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