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The recently established formalism of a worldline quantum field theory, which describes the classical
scattering of massive bodies (black holes, neutron stars, or stars) in Einstein gravity, is generalized up to
quadratic order in spin, revealing an alternative N' = 2 supersymmetric description of the symmetries
inherent in spinning bodies. The far-field time domain waveform of the gravitational waves produced in
such a spinning encounter is computed at leading order in the post-Minkowskian (weak field, but generic
velocity) expansion, and exhibits this supersymmetry. From the waveform we extract the leading-order
total radiated angular momentum in a generic reference frame, and the total radiated energy in the center-of-
mass frame to leading order in a low-velocity approximation.
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The rise of gravitational wave (GW) astronomy [1] offers
new paths to explore our universe, including black hole (BH)
population and formation studies [2], tests of gravity in the
strong-field regime [3], measurements of the Hubble con-
stant [4], and investigations of strongly interacting matter
inside neutron stars [5]. This form of astronomy relies
heavily on Bayesian methods to infer probability distribu-
tions for theoretical GW predictions (templates), depending
on a source’s parameters, to match the measured strain on
detectors. With the network of GW observatories steadily
increasing in sensitivity [6], theoretical GW predictions need
to keep pace with the accuracy requirements placed on
templates [7]. For the inspiral and merger phases of a binary
an important strategy is to synergistically combine approxi-
mate and numerical relativity predictions [8], each applicable
only to a corner of the parameter space [9].

In this Letter we calculate gravitational waveforms—the
primary observables of GW detectors—produced in the
parameter-space region of highly eccentric (scattering) spin-
ning BHs and neutron stars, to leading order in the weak-field,
or post-Minkowskian (PM), approximation. Following the
above strategy, this is a valuable input for future eccentric
waveform models. Indeed, the extension of contemporary
quasicircular (noneccentric) waveform models for spinning
binaries to eccentric orbits (including scattering) is under
active investigation [10]. This is motivated, for instance, by
the potential insight gained on the formation channels or
astrophysical environments of binary BHs (BBHs) through
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measurements of eccentricity [11] and spins [12], or the
search for scattering BHs [13] in our universe.

Accurate predictions for GWs from BBHs should
crucially also account for the BHs’ spins [14], and this
is an important aspect of the present work. The gravita-
tional waveforms presented here are valid up to quadratic
order in angular momenta (spins) of the compact stars; that
is, we extend Crowley, Kovacs, and Thorne’s seminal
nonspinning result [15]. We also improve on our earlier
reproduction of the nonspinning result [16] by presenting
results in a compact Lorentz-covariant form, using an
improved integration strategy.

To obtain these results we generalize the recently intro-
duced worldline quantum field theory (WQFT) formalism
[16,17] to spinning particles on the worldline. This is achieved
by including anticommuting worldline fields carrying the
spin degrees of freedom, building upon Refs. [18-20]. Our
formalism manifests an N = 2 extended worldline super-
symmetry (SUSY) which holds up to the desired quadratic
order in spin. The SUSY implies conservation of the covariant
spin-supplementary condition (SSC), and thus represents an
alternative formulation of the symmetries inherent to spinning
bodies. It also operates on the spinning waveform.

The spinning WQFT innovates over previous approaches
to classical spin based on corotating-frame variables
[21,22] in the effective field theory (EFT) of compact objects
[23,24]—see Ref. [25] for the construction of PM integrands
and Refs. [26,27] for worldline and spin deflections (in
agreement with scattering amplitude results [28,29]). The
worldline EFT was applied to radiation also in the weak-field
and slow-motion, i.e., post-Newtonian, approximation [30]—
see Ref. [31] for more traditional methods. Other approaches
to PM spin effects can be found in Ref. [32].

Spinning Worldline Quantum Field Theory.—It has been
known since the 1980s [18] that the relativistic wave
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equation for a massless or massive spin-//2 field in flat
spacetime (generalizing the Klein-Gordon, Dirac, and
Maxwell or Proca equations) may be obtained by quanti-
zation of an extended supersymmetric particle model where
one augments the bosonic trajectory x*(z) by N anticom-
muting, real worldline fields. Generalizing this to a curved
background spacetime comes with consistency problems
beyond A/ = 2. Yet the situation for spins up to 1 is well
understood [20], and sufficient for our purposes of describ-
ing two-body scattering up to quadratic order in spin.

We therefore augment the worldline trajectories x4 (z;)
(i =1, 2) of our two massive bodies by anticommuting
complex Grassmann fields y¢(z;). These are vectors in the
flat tangent Minkowski spacetime connected to the curved
spacetime via the vierbein ef(x). The worldline action in
the massive case for each body takes the form (suppressing
the i subscripts) [33]

| _ Dy* 1 _ _
S= —m/dT {Egﬂ,,x”x” TWe—p— +—Rubcdl//“1l/blllcl//d] .

2
(1)
where g, = e,‘je,l}nab is the metric in mostly minus
signature, (Dy“/Dt) =y + ¥*w,*,y" includes the spin
connection w,“,, and the Riemann tensor is R
€5eiRypeq = 2(0pwy)ap + Opja@yep)- This theory enjoys
a global NV =2 SUSY: it is invariant under

uvab —

oxt = iey + ieyt, Sy = —eefit — Sxtari, (2)

with constant SUSY parameters € and € = €.

The connection to a traditional description of spinning
bodies in general relativity, using the spin field S** and
the Lorentz body-fixed frame A,’j [21,22,24,34,35], comes
about upon identifying the spin field $*(z) with the
Grassmann bilinear:

a1, (3)

One can easily show that S obeys the Lorentz algebra
under Poisson brackets {y®, " }pg = —in®. In fact, the
spin-supplementary condition (SSC) and preservation of
spin length may be related to A/ =2 SUSY-related con-
straints [33]. Finally, by deriving the classical equations
of motion from the action these can be shown to match
the Mathisson-Papapetrou equations [36] at quadratic spin
order. This indicates a hidden A/ = 2 SUSY in the actions
of Refs. [22,34,35].

The actions of Refs. [22,34,35] also carry a first spin-
induced multipole moment term at quadratic order in spins
with an undertermined Wilson coefficient C, where here
Cr = 0 for a Kerr BH. Translating it to our formalism this
term reads

S = 2iehehy

Ses? = _m/dTCEEabl/_/al//bl/_/'l//v (4)

where E,j, == R, X'X" is the “electric” part of the
Riemann tensor. The N =2 SUSY is now maintained
only in an approximate sense [33]: it survives in the action
for terms up to O(y?), i.e., quadratic order in spin.

In order to describe a scattering scenario we expand the
worldline fields about solutions of the equations of motion
along straight-line trajectories:

X (7)) = b + vjti + 2 (7)),

yi(n) =¥ +yi'(z), (5)
where S = —Zi@?“lﬂlf] captures the initial spin of the two
massive objects. The weak gravity expansion of the
vierbein reads

K2

K
et = <;1W +—h, — g hw,hﬁ + O(K3)), (6)

2
introducing the graviton field /,,(x) and the gravitational
coupling x? = 32xzG. Note that in this perturbative frame-
work the distinction between curved p,v, ... and tangent
a, b, ... indices necessarily drops.

The spinning WQFT has the partition function

Zwqrr = const X /D[hw]ei(SEHJrng)

2 2
< [TIppfien|i> o455 )
i=1 i—1
where Sgy is the Einstein-Hilbert action, and the gauge-
fixing term Sy enforces de Donder gauge. The SUSY
variations [Eq. (2)] leave an imprint on the free energy (or
eikonal) Fyqpr(b;, v;,S;) = —ilog Zwqpr: after integrat-
ing out the fluctuations z# and w* in the path integral
[Eq. (7)], the SUSY variations of the background trajecto-
ries [Eq. (5)] remain intact in an asymptotically flat space
time. That is, the transformations

St = ieW! + ie?, SV = —er!
= 88! = v!sbY — v45b (8)

ov; =0,

are a symmetry of Fyqpr(b;, v;,S;) (only up to quadratic
spin order when the Wilson coefficients Cy; are included).
As we shall see, this is also a symmetry of the waveform.
Using a suitable shift of the proper times z; we may choose
b-v; =0, where b* =Db5—b} is the relative impact
parameter; by gauge fixing the SUSY transformations
[Eq. (8)] we impose v;,S!* = 0 (the covariant SSC).

Feynman rules.—As the Feynman rules for the Einstein-
Hilbert action are conventional we will not dwell on
them; the only subtlety is our use of a refarded graviton
propagator:

Wl =i Lo )
.’\NV]\G/VV". (k0+i€)2_k27
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S?), where w; = k-v; by energy
conservation at the worldline vertices. For diagrams (b)—(d) we
also include the corresponding flipped topologies with massive
bodies 1 <> 2; for diagram (d) (which includes the propagating
fermion 1//2”) we also include the graph with the arrow reversed.

With Py.5 #= 4,100 — 3 M- On the worldline we work
in one-dimensional energy (frequency) space: the propa-
gators for the fluctuations z/(w) and anticommuting
vectors y'*(w) are respectively

K y oo (10a)
— " m (w +i€)2’

[ y

o—r " Zm(w—i—ie) ’ (10b)

which also both involve a retarded ie prescription. The
former was already used in Refs. [16,17].

Next we consider the worldline vertices. The simplest of
these is the single-graviton emission vertex:

-

Py (k)

—i%eik'bﬁ(ls ) (U“v” + ik, SPHp¥)

+ %kpk(,S"”S”“ + %UWUC .S-S- k:)) ,
(11)

where &(w) := (27)6(w), and we have used S* =
—2iPP . The other worldline-based vertices required for
the 2PM Bremsstrahlung all appear in Fig. 1: the two-point
interaction between a graviton and a single z# mode in (b), the
two-graviton emission vertex in (c), and the two-point
interaction between a graviton and y'* in (d). Full expressions
for these vertices are provided in the Supplemental
Material [37].

Waveform from WQFT.—To describe the Bremsstrahlung
at 2PM order including spin effects we compute the

expectation value k*(h,, (k))wopr- This requires us to
compute four kinds of Feynman graphs, illustrated in
Fig. 1. Explicit expressions for the first two graphs (a)
and (b) were given in the nonspinning case [16]; these are
now modified by terms up to O(S?). Graphs (c) and (d) are
unique to the spinning case—for the latter we sum over both
routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared with all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4Ge™ S, [k* = Q(1,X)] is extracted from the
WQFT via

(k) = 2 R (k) war. (12)

where Q is the GW frequency and X = x/r points towards
the observer. However, it is advantageous to study the time-
domain waveform f(u,X) which is given by a Fourier
transform:

f(w,%) 4G
r

(13)

v —
ke"'hy, =

/ e~ikxems, (k)
Q

K =Qp*

We have contracted with a polarization tensor e = %e”e’“,

Jo = 2. (dQ/27), and p* = (1,%); in a PM decomposi-
tion f =5, G" f" we seek the 2PM component f(2),
Note that k-x=Q(t—r) yields the retarded time
u=t—r,ande-e=¢€-p=0.

Integration.—Our integration procedure follows closely
that used for the nonspinning calculation in Ref. [16], the
main difference being that we maintain four-dimensional
Lorentz covariance. Each diagram contributing to
k?(h,, (k))wopr carries the overall factor

pio(k) = e @bt el (q - v))5(qy - vy)5(k — g1 — ).
(14)

We integrate over g;, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over Q—as
in Eq. (13)—the full integration measure becomes

. 1 o
/ pna (ke e = / gy - vy)e P, (15)
Q.q1.92 P12 Jg

where [ = [[d*q;/(27)"]; the delta function constraints
give Q = [(q; - v2)/(p-v,)] and ¢, = k — ¢,. The shifted
impact parameter,

b* = bk — b, b = b + uv, (16)
extends the original impact parameter b* = b, — | along

the undeflected trajectories of the two bodies. Finally, u; is
the retarded time in the ith rest frame:
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uy =L =0, (17)
P
This implies p-b; =p-x=u, so p-b = 0.

Rewriting the integral measure as in Eq. (15) is
convenient for performing the integrals of diagrams
(b)—(d) of Fig. 1, in the rest frame of body 1. The mirrored
counterparts to these diagrams are easily recovered after
integration using the 1 <> 2 symmetry of the waveform. To
integrate diagram (a) we insert the partial-fraction identity
qr°ay* = =q;>(2k - q1)™" = ¢;%(2k - g,) ™" (which is valid
for k on shell) and focus on the first term.

The full 2PM waveform is then written schematically as
(dropping the subscript on ¢;)

o e Ng) M(q)
m1m2_4ﬂ/q§(q 2 q* <Q'112+i€ (6]‘112)(61',0))

+(12), (18)

with the A/ and M contributions corresponding to dia-
grams (b)—(d) and (a) in Fig. 1 respectively. The numerators
N (q) and M(q) have a uniform power counting in g for
each spin order,

N(q) =Nug" + N wd"q" + Nyw,d"a" "

M(q) = Mywd"q" + Myu,d"q" ¢ + Myuped"q° 4" 4"
(19)

and the nonspinning result involves only \V,, and M,,,. We

present full expressions for A and M in the ancillary file

attached to the arXiv submission of this Letter.
To the lowest order in g*, the first integral in Eq. (18) is

e—iq-b q,u

4x v T
/qﬁ(q 2 > q-vy+ie
Pv,, b 1 Uy
(=1l 6P\ -1 [b];
where P == — o//1¥ is a projector into the rest frame

of the ith body, |b| = —/b"b, (the impact parameter is
spacelike) and

Bl = /=B, Pish, = \/IbP + (2 =103, (21)

are the lengths of the shifted impact parameter b* [Eq. (16)]
in the two rest frames. The second integral in Eq. (18) is

e—iq<b

q"q"
4ﬂ/z§(q-vl)—2 —
q q q-02q4-p

_Kv, Ky p=2(vy - K)¥(p - K)Y

— . (22)
(r* = 1)(p - v1)*[b]*[bI*[b],
where we have introduced the symmetric tensor
K% = P¥|b|? + (P;- b)*(P; - b)Y, (23)

with the property that K*“v;,, = K%b, = 0. Both integrals
are derived in the Supplemental Material [37]; one general-
izes to higher powers of ¢ in the numerators by taking
derivatives with respect to b*.

Results.—The 2PM waveform takes the schematic form

(s)
s 21 ), B
= = ~ 1 2), 24
mym, ;:O:|b|%s+1 ay B+ +(1<2), (24)

where the coefficients a,(-s), ,Bl@, provided in the ancillary
file, are associated with the N/~ and M-type contributions
in Eq. (18) respectively; they are functions of u;, b*, v’; , PH,
and S and bilinear in ¢#. The waveform f is invariant
under the SUSY transformations in Eq. (8) to quadratic
order in spin regardless of the values of Cg ;. To see this we
expand the waveform at all PM orders in powers of spin:

2 2
f = f() + Zsi,ﬂyfﬁw + Z Si,;ij,/)O' lil;;/m + 0(83)’ (25)
i=1 i,j=1

where f1* and f};"" are defined modulo terms that vanish
on support of v;,,S¢ = 0. The SUSY links higher-spin to
lower-spin terms:

1.9f,
20b;,

"
lafi _ IU/;[!’"]’ (26)

—p, [ — .
vl,l/fl ’ 48bj,p UJ;O' 17

and these identities are satisfied by the waveform
[Eq. (24)].

To illustrate the waveform we consider the gravitational
wave memory Af(X) := f(4o00,X) — f(—o0,X). The con-
stant spin tensors are decomposed in terms of the Pauli-
Lubanski vectors @' as &t = e),07a?, the latter satisfying
a;-v; =0. In the aligned-spin case a;-b=a;-v; =0,
i.e., the spin vectors are orthogonal to the plane of
scattering. Writing |a;| = \/—a? the wave memory is then
proportional to the nonspinning result:

2v|as a3|* : Cgila;? 2
Af® = (1 +b(1U2>+ ||b||2 —; |’b|2 | )Afg>0,
Afglo 42y —1)e-v(2b-€ep- vy —b-pe-vy)
mymy BV = 1(p- 0,2
+ (1 < 2), (27)
where o = @/ + db. For two Kerr black holes (C; = 0)
with equal-and-opposite spins (daf = —db) we see that

Af® =A ff,szio, which we observe also when the spins
are misaligned to the plane of scattering.

There is also a 1PM (nonradiating) contribution to the
waveform consisting of single-graviton emission from
either massive body:
2m1 (6 ) 1)1)2 4 2m2

FI%) =
P P

(e-1vy)%  (28)
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FIG.2. Total radiated angular momenta for the scattering of two
Kerr-BHs with v = 0.2 as a function of the angle between the
total initial spins a; = a; +a, and b (with a;-v; =0) for a
range of ratios |a3|/|b|. We show the normalized ratio of angular
momenta emitted orthogonal to the b, v plane (left plot) and in the
b direction (right plot), normalization is w.r.t. angular momentum
emitted in the spinless case.

At 1PM order there is manifestly no dependence on either
the spins S or impact parameters 2, so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the waveform
contribute to the total radiated angular momentum J;‘}d.
Using three-dimensional Cartesian basis vectors €;, we
choose a frame of reference with the initial velocities %
restricted to the 7—x plane; b = |b|é, is orthogonal to these.
Then we find two nonzero components of Jii*: J§i! and

Jrad

=, which are conveniently arranged into

ErdLO _ vG3 mim3x [37 v(65m; +69m,)(a;-&;)

1503(a,

T+ s AGTmm,y (277 — 1)

Z(v)

Jigf‘|8:0 |b|2 \/J/2 -1
] . .1)2
« <1 _ 211)33 12 _(33 21)
b|(L+2%)  |b]
+ ZCE’ +0(G%.  (29)
\blz

We normalize with respect to Ji|s_ . the initial angular
momentum in the nonspinning case. The spin vectors a;
and a, are taken in the rest frame of each massive body;
a; = a; + ap, 1= é2 + iég,, and

(30?2 —1)

+—=+ s—arctanh(v) (30)
v v

is a universal prefactor. Equation (29) holds in the rest
frame of either body or the center-of-mass (c.0.m.) frame;
see Fig. 2 for plots. For a derivation we refer the reader to
the Supplemental Material [37]. There we also compute the
total radiated energy in the c.o.m. frame. Due to the
multiscale nature of the waveform it is difficult to perform
the necessary time and solid angle integrals, so we
performed a low velocity expansion. For terms up to
O(v?) we find

€;)(ay-€,)—3559(a; -&;)(ay- &) +1816(a; - 23)(ay - &;)

P 15 10[b(m; +m;)

(3385 — 3472CE’1)(31 éz)z + 8(245 — 236CE’1 ) (al . é3)2

320[b2

+9(]85— 176CE,1)(31 _é1)2_
320[b2

where the swap (1 <> 2) does not affect the basis vectors €;
or the constant term (37/15). It is straightforward to extend
this result to higher orders in v.

Conclusions.—In this Letter we extended the WQFT to
describe spinning compact bodies to quadratic order in
spin, and calculated the leading-PM order waveform for
highly eccentric (scattering) orbits. Our accompanying
work [33] presents an application to further observables
such as the spin kick and deflection [26,29] at 2PM order
and gives details on the approximate SUSY and its relation
to the SSC. The radiated energy [Eq. (31)] should also be
particularly useful for future studies. In Refs. [38,39] the
O(G?) energy loss from a scattering of nonspinning black
holes was recently computed to all orders in velocity using
the formalism of [40] (see also Ref. [41]); a similar result
could conceivably be obtained at O(S?), and then checked
against Eq. (31) in the low-velocity limit. Similarly, the
remarkably simple result for radiated angular momentum
[Eq. (29)] at 2PM order is intriguing; it may be important
for understanding the high-energy limit; see Ref. [42,43]
for the nonspinning case.

+(1<2)+0(?) |, (31)

The application of modern on shell and integration
techniques to compute scattering amplitudes [38,44—48]
holds great promise for pushing calculations to higher PM
orders. This is demonstrated by the impressive calculation
of the 4PM conservative dynamics in the potential region
[48,49]—see also Refs. [42,43,46,50-54]. The connection
between amplitudes and classical physics was studied in
Refs. [40,41,55], and Ref. [27] discussed the connection to
bound orbits. Our WQFT framework [16,17] provides an
efficient, rather intuitive way to connect amplitude and
(classical) worldline EFT calculations. It may therefore
benefit from modern amplitude techniques at higher PM
orders in future work, building on the compact Lorentz-
covariant master integrals provided here.

We would like to thank F. Bautista, R. Bonezzi,
A. Buonanno, P. Pichini, and J. Vines for very helpful
discussions. We are also grateful for use of G. Kilin’s
C++ graph library. G. U.J.’s and G. M.’s research is funded
by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) Project No. 417533893/GRK2575
“Rethinking Quantum Field Theory.”
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