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We introduce plaquette projected entangled-pair states, a class of states in a lattice that can be generated by
applying sequential unitaries acting on plaquettes of overlapping regions. They satisfy area-law entanglement,
possess long-range correlations, and naturally generalize other relevant classes of tensor network states. We
identify a subclass that can be more efficiently prepared in a radial fashion and that contains the family of
isometric tensor network states [M. P. Zaletel and F. Pollmann, Phys. Rev. Lett. 124, 037201 (2020)]. We also
show how this subclass can be efficiently prepared using an array of photon sources.
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Tensor network states play a fundamental role both in
quantum information processing and many-body physics, as
they are natural representations of states with area-law
entanglement [1–3]. In one dimension, matrix-product states
(MPS) [4–6] efficiently approximate the ground state of
gapped [7] and critical Hamiltonians [8]. Their higher-
dimensional generalizations, projected entangled-pair states
(PEPS) [9], also play an important role in many-body
physics. Apart from providing efficient approximations in
different scenarios, they embrace many paradigmatic states
of condensed matter physics, including topological states
like the toric code [10,11] and string-net states [12–14],
or resonating valence bound states [10]. They also contain
elements that are relevant in the context of quantum
metrology [15], like the W [16] or GHZ states [17], or in
quantum computing, like the cluster [18], graph [19–21], and
hypergraph states [22,23]. Thus, the efficient preparation of
such states would have an important impact on the study of
many-body systems and quantum information.
One can generate MPS by sequentially applying local

unitaries [24,25], which provides a way to deterministically
prepare entangled states on quantum computers [26,27]
or in photonic systems [25,28–36], with a generation time
(circuit depth) that scales linearly with the system size n
(number of qudits) as OðnÞ. Moreover, sequential MPS
generation is an essential component in numerous theo-
retical frameworks [27,37–45].
Efficient generation of PEPS is, however, much more

difficult. Even in two dimensions, it is believed that most

states will require a preparation time that increases expo-
nentially with the system size [10,46]. Nevertheless, most
of the paradigmatic examples mentioned above can also be
efficiently prepared in higher dimensions, and experimental
efforts have already started [47,48]. This calls for efforts
to identify, classify, and extend subclasses of PEPS that
allow for efficient preparation, ideally together with an
explicit algorithm to do so. In this vein, there are two
subclasses of PEPS in two dimensions that stand out:
(i) sequentially generated states (SGS) [49], and (ii) PEPS
generated by photon feedback (F-PEPS) [50]. Interestingly,
both of these classes can be obtained from a product state
by a sequential quantum circuit.
In this Letter, we introduce plaquette PEPS (P-PEPS),

which are defined by sequentially applying unitaries to
plaquettes of qudits initially in a product state. P-PEPS
can straightforwardly be expressed as PEPS and naturally
encompass SGS and F-PEPS. We focus on a particular
radial plaquette ordering, which leads to a subclass we call
radial plaquette PEPS (RP-PEPS). This class allows certain
local observables to be computed efficiently and has SGS
and isometric tensor network states (isoTNS) [51] as proper
subclasses. Thus, our construction provides a quantum
circuit to prepare isoTNS, which is a class that has been
shown to include graph states and hypergraph states of
local connectivity, and all string-net states [52]. While for a
q-dimensional lattice of N ¼ n1 ×… × nq sites, in the
worst case, P-PEPS require a circuit depth scaling with the
total number of sites, RP-PEPS can be prepared particularly
efficiently, with the circuit depth TRP scaling as the side
length of the lattice

TRP ¼ Oðmax
i

niÞ: ð1Þ

We also show that an array of coupled quantum sources,
each comprising an ancilla-emitter pair, can naturally
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produce RP-PEPS of flying qubits or qudits with the
same efficient scaling, and prepare F-PEPS with a circuit
depth OðNÞ. This includes a wide variety of high-
dimensional states that have been proposed for sequential
photon generation [20,35,50,53–62]. Overall, P-PEPS (RP-
PEPS) and their generation protocols apply to photonic
systems, and to platforms with matter qubits or qudits like
superconducting circuits [63], trapped ions [64], or
Rydberg atoms [65], where local interactions can be
engineered with high precision.
Plaquette PEPS.—For concreteness, we restrict our

attention to a two-dimensional lattice of qudits of size
N ¼ n ×m, and the high-dimensional generalization will
be discussed in the Supplemental Material (SM) [66].
We define P-PEPS with periodic boundary conditions as

the states generated from the product state j0i⊗N through
sequential application of unitaries to plaquettes of size
Lp × Lp (Lp ≪ m, n) [cf. Fig. 1(a)]

jψpi ¼
YN

μ¼1

Ûv⃗μ j0i⊗N; ð2Þ

where v⃗μ ¼ ðiμ; jμÞ and the unitary Ûv⃗μ acts on qudits in the
square spanning from ðiμ; jμÞ to ðiμþLp−1;jμþLp−1Þ,
and we identify the rows i�m≡ i and columns j� n≡ j.
Here, the choice of plaquette shape reflects the locality
of the unitaries. The ordering of the unitaries P ¼
ðv⃗1; v⃗2;…; v⃗NÞ fulfils the conditions v⃗μ ≠ v⃗ν for μ ≠ ν.
We show an example of P in Fig. 1(b) and call the position
of the first unitary v⃗1 the source point. To define the state
with open boundary conditions, we simply omit gates that
act across boundaries.
P-PEPS is a subclass of PEPS, which are states defined

through a network of tensors with one tensor per lattice site
[Fig. 1(c)], whose virtual indices are contracted with their
neighbors. In two dimensions,

jΨPEPSi ¼
Xd−1

fkg¼0

F 2DðfBk
½i;j�lurbgÞjfkgi; ð3Þ

where Bk
½i;j�lurb is a rank-five tensor on the site ði; jÞ that has

one physical index k of dimension d and four virtual indices
l, u, r, b of bond dimensionD. The symbol F 2D denotes the
contraction of all virtual indices. To obtain the PEPS
representation of P-PEPS, we decompose the plaquette
unitaries into projected entangled-pair operators (PEPO)
[3] [cf. Fig. 1(d)]. This allows one to write the whole
sequential circuit as a PEPO, which, applied to a product
state, yields a PEPS with bond dimensionD ≤ OðdL4

pÞ [66].
We are particularly interested in cases where each unitary

overlaps with at least one of the earlier ones, such that they
create correlations. The state shown in Fig. 1(a) is such an
example. Sequential circuits with overlapping unitaries

efficiently establish correlations between arbitrary loca-
tions of the lattice with OðNÞ unitaries [66]. This should
be contrasted with brick wall circuits [69] that take
OðN · max

i
niÞ unitaries to do so [66]. This implies that

P-PEPS offer a more efficient parametrization of states with
correlations across the entire system. Moreover, while
P-PEPS have area-law entanglement, brick wall circuits
that create long-range correlations will, instead, lead to
states with volume-law entanglement [70–72].
Radial plaquette PEPS.—Naively, it takes a circuit

depth OðNÞ to create a P-PEPS [cf. Eq. (2)]. However,
some orderings P allow unitaries to be applied in parallel.
A simple example is to arrange the unitaries as a brick
wall circuit of depth OðL2

pÞ. Here, we define a subclass
of P-PEPS, RP-PEPS, where starting from the source
point, the positions fv⃗μg of the unitaries are ordered such
that they can be grouped to multiple layers of commuting
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FIG. 1. (a) Plaquette PEPS (P-PEPS) are prepared by sequen-
tially applying plaquette unitaries fÛv⃗μg (denoted by the gray
squares) of size Lp × Lp (Lp ¼ 2 here) to a product state. The
source point v⃗1 is marked by a red dot. Periodic and open
boundary conditions are distinguished by whether or not the
sequence of unitaries contains that act across the boundary (green
squares). (b) P-PEPS is determined by the unitaries and their
ordering P. Here, we show an example of P using a directional
string and the numbers from 1 to N. (c) PEPS are states defined
through connected networks of tensors with virtual indices
(connected lines) of bond dimension D, and physical indices
of dimension d (sticking out). (d) The plaquette unitaries can be
decomposed into PEPO, which lead to a PEPS representation of
P-PEPS. (e) Preparation of a radial plaquette PEPS with Lp ¼ 2.
Here, starting from the source point (the red dot), the ordering P
is denoted by the numbers. Such ordering allows one to apply
each layer (denoted by the shades of different colors) of unitaries
in parallel. The gates in the fifth layer are denoted by gray
squares.
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unitaries, and each layer acts on the boundary of the
existing gate-acted region. An example with Lp ¼ 2 is
illustrated in Fig. 1(e), where the gates are grouped as
½ð1Þ; ð2; 3Þ; ð4 − 7Þ; ð8 − 13Þ; ð14 − 21Þ;…� (denoted by
shades of different colors). To resolve ambiguities in the
plaquette order, we choose preferred directions in which
the position of the plaquette moves. In Fig. 1(e), we
choose “horizontal first, and positive direction first.” The
circuit depth of preparing RP-PEPS is asymptotically
TRP ≈ nþ Lpm, following the scaling as Eq. (1).
Moreover, RP-PEPS allow efficient computation of expect-
ation values of local observables that are geometrically
close to the source point or the line that passes through the
source point along the preferred direction, and this generi-
cally implies that correlation functions in these regions
decay exponentially. This is reminiscent of isoTNS [51].
The above definitions straightforwardly generalize to

higher dimensional lattices, where plaquettes become high-
dimensional cubes [66]. While the general circuit depth for
P-PEPS again scales with N, RP-PEPS obeys Eq. (1).
Relation to other families of PEPS.—By definition, P-

PEPS can be efficiently prepared, have a PEPS description,
and host long-range correlations. Now, we show that P-
PEPS naturally encompass other families of PEPS that are
prepared sequentially (SGS and F-PEPS), as well as
isoTNS (we follow the definition in Ref. [51], and see
Ref. [73] for a different definition).
SGS [cf. Fig. 2(a)] are defined in terms of linear

sequential circuits comprising unitaries fV̂ ½i;j�g of length
Lp acting on rows across qudits whose columns have been
prepared in MPS [49]

jψSGSi ¼
Yn−s

i¼1

Ym

j¼1

V̂ ½i;j� ⊗
n

i0¼1
jψ i0

MPSi: ð4Þ

The MPS in each column can be put in canonical form,
such that they can be written as linear sequential circuits
[24,49]. This allows us to identify the tensor of the
corresponding PEPS as two overlapping Lp-qudit unitaries
[cf. Fig. 2(b)]. These two unitaries are contained in a Lp ×
Lp plaquette unitary. Thus, each SGS can be written as a
RP-PEPS, with the source point at the bottom left of the
lattice in the case of Fig. 2(a).
To be precise, let us denote the class of SGS (RP-PEPS)

on an n ×m lattice with circuit length (plaquette length) Lp

as SGS
Lp
n×m (RP-PEPS

Lp
n×m), we have

SGS
Lp
n×m ⊂ RP-PEPS

Lp
n×m: ð5Þ

The tensors of SGS in the bulk satisfy an isometry
condition shown in Fig. 2(d), which is the same condition
as is obeyed by the tensors in isoTNS [51]. Indeed, as we
show in the following, these classes are closely related.
isoTNS are PEPS [Eq. (3)] in which all tensors satisfy

isometry conditions that depend on their position in the
lattice. Specifically, when all incoming indices of a tensor
[denoted by incoming arrows in Fig. 2(c)] and the physical
index are contracted with corresponding indices of the
complex conjugate of that tensor, the remaining indices
yield the identity. For example, the tensor in the dashed box
in Fig. 2(c) obeys [cf. Fig. 2(d)]

X

k;ur

Bk
½i;j�lurbðBk

½i;j�l0urb0 Þ� ¼ δbb0δll0 : ð6Þ

The red shaded lines in Fig. 2(c) are called orthogonality
hypersurfaces, which only have incoming arrows, and their
intersection is the orthogonality center (OC) [51].
One can prepare isoTNS as RP-PEPS, but restricting

the unitaries in the bulk to be “L” shaped, as shown in
Figs. 3(a1)–3(a6). The required three-qudit unitaries can be
written as

B̂½i;j� ¼
X

lurb;k

Bk
½i;j�lurbjk; r; uihl; b; 0j; ð7Þ

where jk; r; ui≡ jk½i;j�; r½i;jþ1�; u½iþ1;jþ1�i, and the tensor
Bk
½i;j�lurb automatically satisfies the isometry condition

Eq. (6). Thus, each unitary creates an isoTNS site
[cf. Fig. 3(b)].
Sequentially applying the gates shown in

Figs. 3(a1)–3(a6) gives rise to the tensor contraction pattern
shown in Fig. 3(a7), which represents an arbitrary isoTNS
with OC in the corner. The generated isoTNS has bond
dimension d and physical dimension d, except at the right
boundary, where two sites of each row are combined to

B

B†

rl
uk

l

k k

l
l

l

u

r
b

B

k

0

(a) (c)

(d)(b)

FIG. 2. (a) 2D SGS are constructed by first preparing multiple
columns of MPS fjψ i0

MPSig with tensors fAg, and then coupling
neighboring columns of MPS with linear sequential unitaries fV̂g
of length Lp (Lp ¼ 2, here). The red dot denotes the source point
of the corresponding P-PEPS. (b) The tensor inside the dashed
box in (a) can be viewed as two connected two-qudit unitaries and
identified as a PEPS tensor. (c) Isometric tensor network states
(isoTNS). The red shaded lines (dot) are the orthogonality
hypersurfaces (orthogonality center). (d) The isometry condition
of the tensor inside the dashed box in (a) and (c).

PHYSICAL REVIEW LETTERS 128, 010607 (2022)

010607-3



form a site with physical dimension d2. Note that arbitrary
isoTNS of that geometry with a uniform physical dimen-
sion can be embedded in that state by setting the rightmost
qudits to zero and treating them as ancillas. Moreover, it is
clear from Fig. 3(a) that the circuit depth for preparing
isoTNS is T iso ≈ nþm. In the SM [66], we show that:
(i) by extending the indices of L-shaped unitaries to 2sþ 1
qudits with s ¼ ⌈ logd D⌉ and changing the source point
of the RP-PEPS, isoTNS with arbitrary bond dimension
D and with OC in the bulk can be prepared. (ii) This
protocol can be generalized to prepare isoTNS of higher
dimensions. Therefore, isoTNS on arbitrary lattices (of size
n1 ×… × nq) admit exact representations as sequential
quantum circuits, with the circuit depth scaling as

T iso ≈
Xq

i¼1

ni: ð8Þ

The above observation shows that isoTNS ⊂ RP-PEPS. A
similar relation also holds between F-PEPS [50] and P-PEPS,
that F-PEPS ⊂ P-PEPS. Here, F-PEPS is understood as a
generalization toqudits andwitharbitraryphoton feedback.F-
PEPS can be viewed as isoTNS on a lattice with different
connectivity[50].IfwedenoteisoTNSD;d

n×m (F-PEPS
D;d
n×m)asthe

class of isoTNS (F-PEPS) on a n ×m lattice with bond
dimension D and physical dimension d, we prove in the
SM [66] that isoTNS (F-PEPS) are contained in RP-PEPS (P-
PEPS) with a slightly larger lattice

isoTNSD;d
n×m ⊂ RP-PEPS2sþ1

ðnþ2sÞ×ðmþ2sÞ; ð9Þ

F-PEPSD;d
n×m ⊂ P-PEPS2sþ1

ðnþsÞ×ðmþsÞ: ð10Þ

Having established that both SGS and isoTNS are RP-
PEPS with L-shaped unitaries, we note that SGS have a
further condition on the unitaries, namely that they can be
decomposed into two unitaries corresponding to the two
arms of the L [see Fig. 2(b)], which indicates that SGS are a
subclass of isoTNS. This has direct consequences for the
states. While in SGS, local observables can efficiently be
calculated anywhere in the lattice, in isoTNS, this requires
shifting the OC, which can only be done approximately.
Their precise relation is [66]

SGS
Lp
n×m ⊂ isoTNSd

LpðLp−1Þ;d
n×m : ð11Þ

Finally, we note that, since the isometry of the PEPS
tensors derives directly from the unitarity of the preparation
circuit, we further show that RP-PEPS can be expressed as
isoTNS on lattices with unusual connectivities [66].
Generating RP-PEPS of flying qubits or qudits.—

Reference [24] introduces a protocol to prepare arbitrary
photonic MPS of bond dimensionD and physical dimension
d using a photon source comprising aD-level ancilla A1 and
a d-level emitter E1. The MPS is prepared by repeatedly
applying a unitary on the joint ancilla-emitter system,
followed by swapping the emitter state into a flying photon,
defined in terms of the photon emission isometry Mph

Mph∶jkid → j0idjkiph; k ∈ ð0;…; d − 1Þ: ð12Þ

Now, we extend the above protocol by considering an array
of m sequential photon sources coupled to each other as
shown in Fig. 4 and show that photonic RP-PEPS can be
prepared with this setup.
The protocol is shown in Fig. 4. Here, we assume each

ancilla has a dimensionD ¼ dLp−1, so it can be thought of as
Lp − 1 qudits. Starting with the ancillas fAjg and emitters
fEjg in their ground state jφ0i ¼ j0fAjgi ⊗ j0fEjgi, in the
step to prepare the ði; jÞ-th site of the RP-PEPS, first, we

l

l

u u

0

r
r

k
k

b b

B

(a)

(b)

FIG. 3. Radial preparation of isoTNS. (a) The protocol starts from
an initial state j0i⊗N , andwe sequentially apply three-qudit unitaries
that couple neighboring qudits vertically and horizontally following
the order in steps 1–6.Eachunitary becomes a tensor of the resulting
PEPS at the location indicated by the index sticking out. The dashed
lines are guiding lines to indicate the connection to previously
applied unitary blocks. At the end (4–6), we group the sites of the
last two columns (dashed boxes) to satisfy the isometry conditions.
This circuit can prepare arbitrary isoTNS [cf. Fig. 2(c)] of the
geometry shown in step 7, with bond dimension d, and physical
dimension d. (b) Each three-qudit unitary can be identified as an
isoTNS tensor, which satisfies the isometry condition Eq. (6).

(a) (b)

FIG. 4. Generation of photonic RP-PEPS using an array of
coupled sequential photon sources. (a) In the preparation of the
½i; j�-th RP-PEPS site, we apply a unitary Û½i;j� followed by a
photon emission Mi

ph of the emitter Ej. After the initial steps (1)
and (2), steps (3) and (4) will be repeated. (b) At the end of the
protocol, we swap the excitations on the ancillas to the emitters
and then convert them to photons, denoted as S.
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apply a unitary Û½i;j� that acts on the ancillas fAj;…;
AjþLp−1g and emitters fEj;…; EjþLp−1g [see Fig. 4(a)
for Lp ¼ 2 case]. After the unitary, we trigger the photon

emission from the emitter Ej (denoted asM
j
ph [cf. Eq. (12)]).

To disentangle the ancilla from the photons, in the last
Lp − 1 steps of the protocol, we sequentially swap the
effective Lp − 1 qudits contained in the ancilla into photons
[cf. Fig. 4(b)], an operation collectively denoted by S.
The final state of the system is jφ0ijψRPiph, with the
photonic state

jψRPiph ¼ hφ0jS
Yn−Lpþ1

i¼1

Ym−Lpþ1

j¼1

ðMj
phÛ½i;j�Þjφ0i: ð13Þ

jψRPiph is an arbitrary RP-PEPS with open boundary con-
dition and plaquette size Lp, with its source point at the first
photonic qudit. The circuit depth is the same as that of a
matter-based lattice case [cf. Eq. (1)]. The same protocol also
allows us to prepare isoTNS [66], and this setup can be used
to prepare photonic F-PEPS with circuit depth OðNÞ [66].
Notice that, at the boundary of the photon source array,

the photon emission process emits multiple photons, as
visualized in Fig. 4(a4). In contrast to the protocol that
produces RP-PEPS on a matter-based lattice, here, the
overlap of gates along the horizontal direction results from
acting on the ancillas. In Ref. [74], we propose a cavity-
transmon setup to realize this protocol and elaborate on
how to create the two-dimensional photonic cluster state
and the toric code state [75].
Conclusion.—We have introduced P-PEPS and the sub-

class RP-PEPS, which constitute a natural generalization
of sequential preparation protocols from one to higher
dimensions. These states satisfy area-law entanglement
by construction, combine the capacity to host long-range
correlations, topologically ordered states, and a large
subclass of PEPS with a simple and efficient preparation
protocol. Our work helps to clarify the relation between
various relevant classes of PEPS, including SGS [49],
F-PEPS [50] and isoTNS [51], that we show SGS ⊂
isoTNS ⊂ RP-PEPS, and F-PEPS ⊂ P-PEPS.
The family of states we introduce comes with explicit

protocols that prepare them in matter-based and photon-
based lattices, which makes them promising targets for
near-term experimental realization. Furthermore, one can
include several layers of sequential plaquettes to increase
the expressivity of the ansatz.
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