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The stability conditions of a relativistic hydrodynamic theory can be derived directly from the
requirement that the entropy should be maximized in equilibrium. Here, we use a simple geometrical
argument to prove that, if the hydrodynamic theory is stable according to this entropic criterion, then
localized perturbations to the equilibrium state cannot propagate outside their future light cone. In other
words, within relativistic hydrodynamics, acausal theories must be thermodynamically unstable, at least
close to equilibrium. We show that the physical origin of this deep connection between stability and
causality lies in the relationship between entropy and information. Our result may be interpreted as an
“equilibrium conservation theorem,”which generalizes the Hawking-Ellis vacuum conservation theorem to
finite temperature and chemical potential.
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Introduction.—A hydrodynamic theory is said to be
stable if small deviations from the state of global thermo-
dynamic equilibrium do not have the tendency to grow
indefinitely, but remain bounded over time. It is said to be
causal if signals do not propagate faster than light. Every
hydrodynamic theory should guarantee the validity of these
two principles, the former arising from the definition of
equilibrium as the state toward which dissipative systems
evolve as t → þ∞, the latter arising from the principle of
relativity (if signals were superluminal, there would be a
reference frame in which the effect precedes the cause).
Whenever a new theory is proposed, it needs to pass these
two tests, to be considered reliable. To date, these proper-
ties have been mostly studied as two distinct, disconnected
features of the equations of the theory, to be discussed
separately. Intuitively, this approach seems natural, as
stability and causality are two principles which pertain
to two complementary branches of physics: thermodynam-
ics [1] and field theory [2].
However, in reality these two features appear to be

strongly correlated. Divergence-type theories are causal if
and only if they are stable [3] while Israel-Stewart theories
are causal if they are stable [4,5]. Geroch and Lindblom [6]
analyzed a wide class of causal theories for dissipation and
found that many causality conditions have an important
stabilizing effect. Finally, Bemfica et al. [7] recently proved
a theorem, according to which, if a strongly hyperbolic
theory is stable in the fluid rest frame, and it is causal, then it
is stable in every reference frame, formalizing a widespread
intuition [8,9]. All these results suggest the existence of an
underlying physical mechanism connecting causality and
stability. Discovering it would lead to a complete change of
paradigm. In fact, it would provide a new insight into the
physical meaning of the (usually complicated) mathematical
structure which ensures causality. Furthermore, it would

importantly simplify the (usually tedious) job of testing both
causality and stability, maybe reducing one to the other.
To date, a “fully explanatory” mechanism connecting

causality and stability has never been proposed. In fact, such
a connection is usually found a posteriori, by direct
comparison between the two distinct sets of conditions
(as in [4]), or through complicated mathematical proofs, as
in [7]. The goal of this Letter is to finally explain simply the
relationship between causality and stability. We prove, with
a geometrical argument, that if a theory is thermodynami-
cally stable, namely, if the entropy is maximized at equi-
librium (see Gavassino [10]), it is also causal, close to
equilibrium [11].We show that the key to understanding this
result from a physical perspective is the underlying rela-
tionship between entropy and information. Furthermore, we
explain why causality alone does not imply stability (see,
e.g., [12,13]), but one needs at least to prove stability in a
particular reference frame (in agreement with [7]).
We adopt the signature ð−;þ;þ;þÞ and we work in

natural units c ¼ kB ¼ 1.
Thermodynamic stability.—Under which conditions is a

relativistic fluid thermodynamically stable? Consider a
fluid “F” that is in contact with a heat-particle bath
“H”. Assume that the total system “fluidþ bath” is isolated
and evolves spontaneously from a state 1 to a state 2. Then
the total entropy should not decrease (given a quantity A,
we call ΔA ≔ A2 − A1):

ΔStot ¼ ΔSF þ ΔSH ¼ ΔSF þ
Z

2

1

dSH ≥ 0: ð1Þ

If QI are the relevant conserved charges of the system, e.g.,
baryon number and fourmomentum [2], we canwritedSH ¼
−αHI dQI

H, where αI are the thermodynamic conjugates ofQI

and we are adopting Einstein’s convention for the index I.
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Considering that dQI
H ¼ −dQI

F (charge conservation), and
that the bath is defined as a system that is so large that αHI ¼
const≕ α⋆I in any interaction with F [14–16], we find that
(α⋆I are constants)

ΔStot ¼ ΔðSF þ α⋆I QI
FÞ ≥ 0: ð2Þ

This implies that the equilibrium state of F is the state that
maximizes the functional Φ ¼ SF þ α⋆I QI

F for uncon-
strained variations [14–22]. Hence, for an arbitrary spacelike
3D surfaceΣwhich extends over the support ofF, we need to
require that

E½Σ� ≔ −δΦ½Σ� ¼
Z
Σ
EanadΣ ≥ 0;

with Ea ¼ −δðsa þ α⋆I JIaÞ ¼ −δsa − α⋆I δJIa; ð3Þ

where sa is the fluid’s entropy current, JIa are the currents
whose fluxes are QI

F, and “δ” is an arbitrary finite perturba-
tion from the equilibrium state. In most applications,Ea may
be truncated to second order in the perturbations δφi to the
hydrodynamic fields (like the fluid four velocity and the
temperature field).
Let us list the most important properties of Ea: (i) For

any unit vector na, timelike and past directed (nana ¼ −1,
n0 < 0), we have

Eana ≥ 0: ð4Þ

(ii) For the same na as in (i), Eana ¼ 0 on any point where
the perturbation to every observable is zero, and only on
these points. (iii) The four divergence of Ea is nonpositive

∇aEa ≤ 0: ð5Þ

The first property follows from E½Σ� ≥ 0, which must
hold for any spacelike 3D surface Σ covering F [23]. Note
that the vector na ¼ na½Σ� appearing in (3) is the unit
normal to Σ, which is timelike past directed [24]. The
second property follows from the definition of Ea, and from
the assumption that the equilibrium state is unique. The
third property follows from (2). Conditions (i)–(iii) imply
that E is a nonincreasing “square-integral norm” of the
perturbation δφi, enforcing the Lyapunov stability of the
equilibrium state [25–27]. In Supplemental Material [28]
we show that (i)–(iii) are mathematically equivalent to the
Gibbs stability criterion [10].
The criterion for thermodynamic stability described

above is a sufficient condition for hydrodynamic stability,
but contains more information than a hydrodynamic
stability analysis: while the latter is a dynamical property
of the field equations (an on-shell criterion [29]), the former
is a property of the constitutive relations (it must be
respected also off shell). In fact, thermodynamic stability
also implies stability to thermodynamic fluctuations, whose
probability distribution [14,19],

P½δφi� ∝ eδΦ½Σ;δφi� ¼ e−E½Σ;δφi�; ð6Þ

must be peaked at δφi ¼ 0, leading to conditions (i)
and (ii).
To see the difference between hydrodynamic and

thermodynamic stability, consider the case of a perfect
fluid, whose current Ea is [4,10,20]

TEa ¼ ua

2
ðρþ pÞδubδub þ δuaδp

þ ua

2

�
1

c2s

ðδpÞ2
ρþ p

þ nT
cp

ðδσÞ2
�
þO½ðδφiÞ3�; ð7Þ

where ua, n, T, ρ, p, σ, cs, and cp are fluid velocity, particle
density, temperature, energy density, pressure, entropy per
particle, speed of sound, and specific heat at constant
pressure (quantities without “δ” are evaluated at equili-
brium). Conditions (i) and (ii) produce the thermodynamic
inequalities (assuming n; T > 0)

0 < c2s ≤ 1; ρþ p > 0; cp > 0: ð8Þ

A positive cp guarantees stability to heat transfer. However,
since a perfect fluid does not conduce heat, the inequality
cp > 0 is invisible to a hydrodynamic stability analysis. On
the other hand, thermodynamic stability implies stability
also to virtual processes [17], which become real when
thermal fluctuations are included in the description [30,31],
or when we couple the fluid with other fluids [32] or heat
baths [15,16].
Finally, it is also relevant to mention that, in ideal-gas

kinetic theory, Ea always obeys conditions (i)–(iii), and is
given by [10,33] (ε is þ1 for bosons and −1 for fermions)

Ea ¼
Z ðδfÞ2pa

2fð1þ εfÞ
d3p
p0

þO½ðδfÞ3�; ð9Þ

where f ¼ fðx; pÞ is the invariant distribution function,
counting the number of particles in a small phase-space
volume centered on ðx; pÞ [34]. Hence, for ideal gases, the
conditions of thermodynamic stability (i)–(iii) are also a
criterion of consistency with the kinetic description.
The argument for causality.—Our goal is to show that

conditions (i)–(iii) imply causality. We work, for clarity, in
1þ 1 dimensions, on a scale that is assumed sufficiently
small that we can neglect the gravitational field. The
generalization to 3þ 1 dimensions (and curved space-time)
is presented in Supplemental Material [28]. Working in an
inertial coordinate system ðt; xÞ, we consider a perturbation
δφi that is initially confined on the semiaxis x ≤ 0, namely,

δφið0; xÞ ¼ 0; ∀ x > 0: ð10Þ

We apply the Gauss theorem to the triangle ABC shown in
Fig. 1 and use condition (iii):
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E½A� þ E½B� þ E½C� ¼
Z
ðtriangleÞ

∇aEadtdx ≤ 0: ð11Þ

The 1D surfaces A, B, and C are all spacelike, so that their
unit normal vector must be taken inward pointing [35–37].
Combining (10) with condition (ii) we obtain E½C� ¼ 0.
Furthermore, since the unit normals to A and B are timelike
past directed, we can use (i) to show that E½A� and E½B� are
non-negative, so that (11) implies

E½A� ¼ E½B� ¼ 0: ð12Þ

But this implies, recalling (ii), that δφi must be zero on all
the sides of the triangle. Since we can make the triangle
arbitrarily long (A and C may extend to x ¼ þ∞) and the
side B may be arbitrarily close to the line t ¼ x (without
crossing it, because B must be spacelike), we finally obtain

δφiðt; xÞ ¼ 0 for x > t: ð13Þ

This shows that no perturbation can propagate outside the
light cone, hence linear causality [38].
Physical interpretation.—To be able to understand the

physical meaning of the argument above, we need first to
have an intuitive interpretation of Ea.
Within the usual interpretation of entropy as uncertainty,

in the sense that Stot reflects our ignorance, interpreted as a
lack of information [39], about the exact system’s micro-
state (recall Boltzmann’s formula Stot ¼ lnΓ, where Γ is the
number of microscopic realizations of a given macrostate),
Eq. (2) implies

E ¼
�
ignorance at

equilibrium

�
−
�
ignorance in the

perturbed state

�
: ð14Þ

Hence, E is the net information carried by the perturbation.
The Gibbs stability criterion (E ≥ 0), then, is the statement
that any perturbation increases our knowledge about the
microstate. Now, if we look at Eq. (3) and invoke condition
(ii), it follows that we can identify Ea with the current
of information transported by the perturbation (see
Supplemental Material [28] for a direct proof). In fact, if
Ea ¼ 0 in a given region of spaceR, then the average value
of any observable on R coincides with the microcanonical
average (i.e., the equilibrium value). Since the micro-
canonical ensemble assigns equal a priori probability to
every microstate, there is no information in R.
Now that we have an interpretation of Ea, let us examine

conditions (i) and (iii). The latter is the second law of
thermodynamics, as seen from the point of view of
information theory: our initial information about the micro-
state of the system can only be lost (or transported from one
place to another) in time, but never created, because all the
initial conditions tend, as t → þ∞, to the same final
macrostate (the equilibrium). However, the most interesting
condition for us is (i): it is easy to show that imposing (i),
namely that the density of information is non-negative in
any frame, is equivalent to requiring that Ea is timelike (or
lightlike) future directed, namely

EaEa ≤ 0 E0 ≥ 0: ð15Þ

This is where the contact with causality is established. In
fact, if information is transported by a nonspacelike four-
current, it propagates along causal trajectories and cannot
exit the light cone (namely, no perturbation can transport
information faster than light). This result may be seen as the
finite-temperature analog of the Hawking-Ellis vacuum
conservation theorem [35,40]. It establishes that informa-
tion (in their case energy) is not spontaneously formed in an
equilibrium (in their case empty) region and cannot enter it
from outside its causal past. In this analogy, the Gibbs
stability criterion plays the role of the dominant energy
condition.
The inverse argument.—It is natural to ask whether we

can reverse the argument and show that causality implies
stability. This is in general not true (see, e.g., [12,13]). In
fact, let us assume that we still have an information current
Ea, defined by Eq. (3), and that conditions (ii) and (iii) are
valid (they are typically ensured by construction when there
is an entropy current). The causality requirement reduces to
imposing that Ea is timelike and lightlike, but this does not
specify its orientation. It might be the case that Ea, for some
configurations, is past directed, generating instability.
Thus, in general

ðcausalityÞ⇏ðiÞ:

FIG. 1. Visualization of the geometric argument. The initial
perturbation (in red) is located to the left of the origin. Causality
requires it to stay confined in the t ≥ x half-plane. We build the
triangle ABC in a way that all its edges are spacelike. B and C
intersect at the origin. We can regulate B to be arbitrarily close to
the line t ¼ x. The green arrows are a Euclidean representation of
the unit normal vectors to the edges and are taken inward
pointing, consistently with our choice of metric signature [35].
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However, to fix the orientation we only need to assume that
there is a preferred reference frame in which E0 ≥ 0 ∀ δφi.
It is natural, and it usually simplifies the calculations, to
take this reference frame to be aligned with the equilibrium
inverse-temperature four-vector βa, which always exists, is
unique, and is timelike future directed [16,41,42]. Hence,
we can conclude that

ðcausalityÞ þ ðEaβa ≤ 0Þ ⇒ ðiÞ;

which is consistent with the more general theorem of
Bemfica et al. [7].
We can give a more rigorous geometrical proof of this

result, considering the triangle in Fig. 2, assuming causality
and that Eaβa ≤ 0. The setting is similar to that of the
previous geometric argument, however, note that now ðt; xÞ
is not an arbitrary inertial frame, but it has been chosen is
such a way that βa ∝ δat . Furthermore, the arbitrary initial
perturbation has now been imposed on the side C of the
triangle and not on the x axis. Again we can apply the
Gauss theorem, to obtain

E½A� þ E½B� þ E½C� ≤ 0: ð16Þ

Since there is no perturbation on A, we know that E½A� ¼ 0.
Furthermore, given that the normal to B is

na½B� ¼ −
βaffiffiffiffiffiffiffiffiffiffiffiffiffi
−βbβb

p ; ð17Þ

we can use the condition Eaβa ≤ 0 to show that E½B� ≥ 0.
Hence, we have

−E½C� ≥ E½B� ≥ 0: ð18Þ

Noting that E½C� is computed taking the normal to C future
directed, as in Fig. 2, we conclude that −E½C� quantifies the
information contained in C. Its positiveness, for any
possible choice of initial perturbation on C and for any
possible triangle (having the properties described in Fig. 2),
leads to (i) and hence to stability.
Example 1: perfect fluids.—We conclude the Letter with

a couple of examples. Consider the information current of a
perfect fluid (7), assuming that δσ ¼ 0 to first order. Then,
the condition of stability in the fluid rest frame reduces to
(note that ua ¼ Tβa)

−TEaua ¼ ðρþ pÞ δu
bδub
2

þ ðδpÞ2
2ðρþ pÞc2s

≥ 0: ð19Þ

This produces the conditions ρþ p > 0 (positive inertial
mass [24]) and c2s ≥ 0 (stability of the fluid against
compression), which exist also in the Newtonian theory.
The causality requirement EaEa ≤ 0 reads

ðρþ pÞδubδub þ
ðδpÞ2

ðρþ pÞc2s
� 2δp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δubδub

q
≥ 0; ð20Þ

which produces the well-known condition c2s ≤ 1 (sub-
luminal speed of sound). The reader might be surprised that
c2s ≤ 1 is also a stability condition. After all, a sound wave
that propagates faster than light is still governed by a wave
equation, hence its amplitude should remain bounded over
time. However, again we need to remember that a system is
thermodynamically stable if it is stable also to virtual
processes. One can verify that a virtual process in which
the amplitude of a sound wave grows with time increases
the entropy of the fluid in those reference frames in which
the sound wave moves backward in time, generating
instability [43]. Indeed, it is well known that if a causal
microscopic Lagrangian produces an effective macroscopic
fluid theory with c2s > 1, then the equilibrium state is
unstable and the perfect fluid description is not applicable,
because some high frequency modes must grow [12,44,45].
Example 2: Cattaneo equation.—As a second example

we consider a rigid infinite solid bar (1þ 1 dimensions in
flat spacetime), with uniform density, and we model the
heat propagation within extended irreversible thermo-
dynamics [46,47]. We take the fields ðφiÞ ¼ ðT; qÞ, rep-
resenting temperature and heat flux, as degrees of freedom
and impose, in the rest-frame of the solid, the conservation
law

ncp∂tT þ ∂xq ¼ 0: ð21Þ

The ðt; xÞ components of the entropy current are postulated
to be

sa ¼
�
s −

1

2
χq2;

q
T

�
; ð22Þ

FIG. 2. Visualization of the geometric argument for the
theorem of Bemfica et al. [7]. All the edges of the triangle
ABC are spacelike. We create an arbitrary initial perturbation
(in red) on the side C. Since A is outside the causal future of
C, we are free to set the perturbation to zero on A. The inverse
temperature four-vector βa (dark green) is aligned with the t
axis. The light green arrows are a Euclidean representation of
the unit normals to the edges.
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where s ¼ sðTÞ is the equilibrium entropy density.
Combining the conservation law (21) and the constitutive
relation (22), one can show (just apply the technique
of [10]) that the information current is

Ea ¼
�
ncpðδTÞ2

2T2
þ 1

2
χðδqÞ2; δqδT

T2

�
: ð23Þ

The requirement E0 > 0 for δφi ≠ 0 immediately produces
the stability conditions

cp > 0 χ > 0; ð24Þ

the first ensuring stability to heat diffusion [1], the second
to fluctuations of q. The requirement that Ea should not be
spacelike (EaEa ≤ 0) produces

1

χncpT2
≤ 1: ð25Þ

This is, indeed, the causality condition of the model (but it
is also an important stability condition, see [27],
Appendices 3 and 4). In fact, if we postulate an information
annihilation rate ∇aEa ¼ −ðδqÞ2=ðκT2Þ ≤ 0 (κ > 0 is the
heat conductivity coefficient), the resulting linearized field
equation is the Cattaneo equation

χncpT2∂2
t T − ∂2

xT þ ncp
κ

∂tT ¼ 0; ð26Þ

whose characteristic maximum signal propagation speed is
ðχncpT2Þ−1=2 [48,49]. Again, we see that the causality
condition is merely thermodynamic (it involves only
thermodynamic coefficients) and is unaffected by the value
of the kinetic coefficient κ. In fact, while causality is a
geometric constraint on the direction of the information
current, κ only quantifies the rate at which information is
destroyed. In the limit in which κ → þ∞, heat does not
propagate infinitely fast. Instead, information becomes a
conserved quantity, and (26) becomes a nondissipative
causal wave equation.
Conclusions.—On the practical side, our work shows

that the entropy-based stability criterion developed in [10]
is enough also to ensure linear causality, simplifying the job
of testing the reliability of a theory. On the theoretical side,
it reveals the central importance of the information current
Ea in relativistic hydrodynamics, shedding new light on the
role of information theory in a relativistic context. The
reason why it took so long to achieve this understanding is
that the focus has been up to now on trying to connect
causality with hydrodynamic stability, while the real con-
nection is with thermodynamic stability, which is a much
more complete reliability criterion.
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