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The Landauer principle states that any logically irreversible information processing must be accompanied
by dissipation into the environment. In this Letter, we investigate the heat dissipation associated with finite-
time information erasure and the effect of quantum coherence in such processes. By considering a scenario
wherein information is encoded in an open quantum system whose dynamics are described by the Markovian
Lindblad equation, we show that the dissipated heat is lower bounded by the conventional Landauer cost,
as well as a correction term inversely proportional to the operational time. To clarify the relation between
quantum coherence and dissipation, we derive a lower bound for heat dissipation in terms of quantum
coherence. This bound quantitatively implies that the creation of quantum coherence in the energy eigenbasis
during the erasure process inevitably leads to additional heat costs. The obtained bounds hold for arbitrary
operational time and control protocol. By following an optimal control theory, we numerically present an
optimal protocol and illustrate our findings by using a single-qubit system.
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Introduction.—Any irreversible information processing
unavoidably incurs a thermodynamic cost. This fundamen-
tal relationship between information and thermodynamics
is embodied in the Landauer principle [1]. The principle
states that the amount of heat dissipation Q required to
erase information is lower bounded by the entropy change
ΔS of information-bearing degrees of freedom, βQ ≥ ΔS.
Here, β is the inverse temperature of the environment. This
inequality—referred to as the Landauer bound or limit—
lays a foundation for the thermodynamics of information
[2–4] and computation [5,6] and provides a resolution to
the paradox of Maxwell’s demon [7]. The attainability
of the Landauer bound in the slow quasistatic limit has
been experimentally verified in various systems [8–13].
Nonetheless, modern computing requires fast memory
erasure, which generally comes with a thermodynamic
cost far beyond the Landauer limit. Thus, improving our
understanding of heat dissipation in finite-time information
processing is relevant to the development of efficient
computing devices.
In recent years, the Landauer principle has been exten-

sively studied in the framework of stochastic thermody-
namics from the classical to the quantum regime [14–33].
One central issue is investigating how much heat needs to
be dissipated to erase information in far-from-equilibrium
situations. When the erasure fidelity is predetermined,
a trade-off between dissipation and operation time appa-
rently occurs, as indicated in slow-driving protocols
[34–36]. Recently, Proesmans et al. have derived a
trade-off relation for arbitrary driving speed in classical
bits modeled by a double-well potential [37,38]. They
showed that the minimum dissipation for erasing a classical
bit is bounded from below by the Landauer cost, as well as

a term inversely proportional to the operational time, which
is somewhat reminiscent of a speed limit [39–42]. In the
short-time limit, the finite-time correction term is dominant
over the Landauer cost. From this development, quantum
extensions relevant to information erasure in qubits are
strongly desired.
In addition, in the quantum regime, quantum coherence

is one of the crucial aspects. Recently, the role of quantum
coherence has been intensively discussed in the context of
finite-time thermodynamics [43–50]. In the case of conven-
tional heat engines driven by heat baths with different
temperatures, quantum coherence hinders the thermody-
namic performance in the linear response regime with
respect to small driving amplitudes [51] or small driving
speeds [52]. On the other hand, power outputs can be
enhanced by coherence in several far-from-equilibrium
models [44,53–55]. Thus, the role of quantum coherence
in nonequilibrium thermodynamics is highly elusive.
Concerning the Landauer principle, Miller et al. have
examined the slow-driving case and have found that
quantum coherence generates additional dissipation [56].
This property is consistent with the aforementioned slow-
driving case in heat engines. Hence, as the next step toward
a complete understanding of the quantum Landauer prin-
ciple, determining the effect of an arbitrary driving speed
on the relation between quantum coherence and dissipation
is clearly important.
From these two backgrounds, in this Letter, we address

the following questions: (i) What is the effect of a finite-
time protocol with a finite erasure error on heat dissipation?
(ii) What is the role of quantum coherence in heat
dissipation for an arbitrary driving speed? These two are
clearly fundamental for the in-depth understanding of the
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quantum Landauer principle. To answer these questions,
we consider a dynamical class described by the Markovian
Lindblad equations, which guarantee thermodynamically
consistent dynamics. We then rigorously provide quanti-
tative answers to these questions. The result for the first
question is presented below in inequality (3), which is
identified as a quantum extension of the classical version
obtained in Ref. [37]. For the second question, we show the
inevitable heat dissipation caused by quantum coherence
as below in inequality (10), which explicitly shows that
quantum coherence in the qudit always induces additional
heat dissipation compared to classical protocols. The
obtained results hold for an arbitrary control protocol
and the driving speed. By using a single-qubit system,
we present an optimal control protocol obtained numeri-
cally by optimizing the dissipation and erasure fidelity,
which supports our findings.
Erasure setup and first main result.—We consider an

information erasure process realized by using a controllable
open qudit system with an arbitrary dimension d and an
infinite heat bath at the inverse temperature β ¼ 1=ðkBTÞ.
The former and latter are referred to as information-bearing
and non-information-bearing degrees of freedom, respec-
tively. The information content we want to erase is encoded
in the density matrix of the system, which is typically set
to a maximally mixed state ϱ0 ¼ I=d. This mixed state is
regarded as an ensemble of many initial pure states that are
subject to reset. The maximally mixed state is sufficient
to understand the average dissipated heat of the erasure
process for all initial pure states, and if an erasure protocol
can reliably reset the qudit from the maximally mixed state,
then it does so for an arbitrary pure state (see Supplemental
Material [57] for details). The information is erased in a
finite time τ by varying the control Hamiltonian Ht. Here,
we focus on a dynamical class in which the system is
always weakly attached to the heat bath, and its dynamics
are described by the Lindblad master equation [68,69].
Let ϱt be the density matrix of the system at time t; then, the
dynamics are described as

_ϱt ¼ LtðϱtÞ;
LtðϱÞ ≔ −iℏ−1½Ht; ϱ� þ

X
k

D½LkðtÞ�ϱ; ð1Þ

with the dissipator given by D½L�ϱ ≔ LϱL† − fL†L; ϱg=2.
Here, LkðtÞ are time-dependent jump operators that account
for transitions between different energy eigenstates. The
dot indicates the time derivative, and ½∘;⋆� and f∘;⋆g
denote the commutator and anticommutator of the two
operators, respectively. Assume that the generator Lt obeys
the quantum detailed balance with respect to the
Hamiltonian Ht at all times [70]. This condition ensures
that the thermal state πt ≔ e−βHt=trfe−βHtg is the instanta-
neous stationary state of the Lindblad equation,LtðπtÞ ¼ 0.

Hereinafter, both the Planck constant and the Boltzmann
constant are set to unity: ℏ ¼ kB ¼ 1.
Resetting the system state to a specific state results in a

change in the system entropy ΔS, which is quantified by
the von Neumann entropy. The entropy decrease in the
information-bearing degrees of freedom is compensated by
the amount of heat transferred to the environment Q. The
change in the system entropy and the average dissipated
heat are, respectively, written as follows [71]:

ΔS ≔ −trfϱ0 ln ϱ0g þ trfϱτ ln ϱτg;

Q ≔ −
Z

τ

0

trfHt _ϱtgdt: ð2Þ

The Landauer bound can be immediately derived from the
second law of thermodynamics, which states that the
irreversible entropy production Στ during period τ is always
non-negative [72], Στ ¼ −ΔSþ βQ ≥ 0.
Under the given setup, we now show the first main result,

leaving the details of the proof in the Supplemental
Material [57],

βQ ≥ ΔSþ kϱ0 − ϱτk21
2τγ̄τ

≥ ΔSþ ½2ð1 − 1=dÞ − ϵ�2
2τγ̄τ

: ð3Þ

Here, k…k1 is the trace norm, ϵ ≔ kϱτ − j0ih0jk1 quanti-
fies the distance error to the ground state, and γ̄τ is the
time-averaged dynamical activity that characterizes the
timescale of the thermal relaxation, defined as γ̄τ ≔
τ−1

R
τ
0

P
k trfLkðtÞϱtLkðtÞ†gdt [39,73]. The obtained

bound implies that the cost of erasing the information
within a finite time is at least the Landauer cost plus a
distance term proportional to τ−1. The result holds for
arbitrary operational time, driving speed, and the final
state, which can be far from the ground state.
Physically important aspects of this relation are now in

order. First, suppose that we use a protocol in which the
stored information is fully erased—that is, ϱτ is equal to
j0ih0j. Then, the bound inequality (3) becomes

βQ ≥ ln dþ 2ð1 − 1=dÞ2
τγ̄τ

: ð4Þ

For a fast erasure τγ̄τ ≪ 1, the second term in the lower
bound becomes dominant. On the other hand, the lower
bound reduces exactly to the Landauer cost in the slow-
erasure limit τγ̄τ ≫ 1. The inequality (4) is the quantum
extension of the classical finite-time Landauer bound
derived in Ref. [37] [see inequality (9) therein]. Next,
consider the case of imperfect information erasure; that is,
ϱτ is not equal to j0ih0j. In this case, we can discuss
how quantum coherence remaining at the final time is
related to dissipation, thus revealing an intrinsic difference
between classical and quantum protocols. To this end, let
Λð∘Þ ≔ P

n Πnð∘ÞΠn be the dephasing map in the energy
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eigenbasis of the ending Hamiltonian Hτ, in which Πn is
the projection operator onto the nth eigenspace. Because
the trace norm is contractive under completely positive
trace-preserving maps, we can decompose kϱ0 − ϱτk21 into
classical and quantum parts as

kϱ0 − ϱτk21 ¼ kΛðϱ0Þ − ΛðϱτÞk21 þ Cres; ð5Þ

where Cres ≥ 0 is a quantum term quantifying the residual
coherence in the final state with respect to the energy
eigenbasis fjnτig. Analogously, the von Neumann entropy
production can also be decomposed as

ΔS ¼ ΔScl þ Crel; ð6Þ

where ΔScl ≔ S½Λðϱ0Þ� − S½ΛðϱτÞ� is the classical entropy
change in terms of the population distribution and Crel ≔
S½ΛðϱτÞ� − SðϱτÞ ≥ 0 is the relative entropy of coherence
in the final state [74]. Consequently, the lower bound in
inequality (3) can be separated into classical and quantum
terms as

βQ ≥ ΔScl þ
kΛðϱ0Þ − ΛðϱτÞk21

2τγ̄τ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
classical

þ Crel þ
Cres

2τγ̄τ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
quantum

: ð7Þ

The classical term is a bound that can also be derived by
using a classical probabilistic process. The above expres-
sion indicates that the quantum coherence left in the final
state contributes a non-negative term in the lower bound.
Second main result.—The relation (7) describes the

quantum coherence in the final state. However, this is
not enough to capture the role of coherence because
quantum coherence is generated during the time it takes
to reach the final state. Therefore, in addition to the above
argument, we discuss the general relation between quantum
coherence and heat dissipation during a finite time τ. To
achieve a general result, we assume a general initial density
matrix and consider the time evolution obeying the dynam-
ics (1). Quantum coherence in the energy eigenbasis is
typically generated because of the presence of noncommut-
ing terms in the Hamiltonian. For the present aim, using the
following intuitive l1 norm of coherence [74] conveniently
helps quantify the amount of coherence contained in the
state ϱt:

Cl1ðϱtÞ ≔
X
m≠n

jhmtjϱtjntij: ð8Þ

Here, fjntig is the instantaneous energy eigenbasis of the
HamiltonianHt [75]. Mathematically, Cl1

is the sum of the
absolute values of all the off-diagonal elements with respect
to the energy eigenbasis. This quantifier was shown to be a
suitable measure of coherence [74] and is widely used in

literature [76]. The amount of coherence accumulated
during period τ can thus be defined naturally,

Cτ ≔
Z

τ

0

Cl1ðϱtÞdt: ð9Þ

The second main result of this Letter is that the average
dissipated heat in a finite time is lower bounded by the
Landauer cost plus a non-negative coherence term (see the
Supplemental Material [57]),

βQ ≥ ΔSþ γ̄Rτ C2τ
2τ

: ð10Þ

In this equation, γ̄Rτ is the time average of the characteristic
relaxation rate, given by ðγ̄Rτ Þ−1 ¼ τ−1

R
τ
0 ½
P

k kLkðtÞk2∞�−1dt
in the d ¼ 2 case (see the Supplemental Material [57] for
the formof γ̄Rτ in thegeneric case).Here, k…k∞ is the spectral
norm. We emphasize that the result holds for the arbitrary
operational time and driving speed. The obtained relation sets
a lower boundondissipation in terms of information-theoretic
entropy and quantum coherence. The inequality (10) implies
that the quantum coherence produced during information
erasure must be accompanied by additional heat. The greater
the generation of coherence, the more heat is dissipated. The
relation (10) is valid for the entire driving speed regime, thus
covering the slow-driving limit [56]. Combining this with the
first main result (3), the Landauer bound can be strengthened
as βQ ≥ ΔSþmaxfkϱ0 − ϱτk21=γ̄τ; γ̄Rτ C2τg=ð2τÞ, when we
use the maximally mixed state for the initial state.
Numerical demonstration with the optimal control

theory.—We exemplify our findings with a simple model
of information erasure by using a single qubit. Two-level
qubit systems are relevant in quantum computation and are
commonly used to store memory in measurement-driven
engines [77,78]. The qubit can be viewed as a spin-1=2
particle weakly coupled to a large bath of bosonic harmonic
oscillators [79], evolving according to the Hamiltonian

Ht ¼
ϵt
2
½cosðθtÞσz þ sinðθtÞσx� ð11Þ

and two jump operators L1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αϵtðNt þ 1Þp j0tih1tj,

L2ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
αϵtNt

p j1tih0tj, in which σx;y;z are the Pauli
matrices, α is the coupling strength, Nt ≔ 1=ðeβϵt − 1Þ is
the Planck distribution, and ϵt and θt are time-dependent
control parameters. The quantity ϵt is the energy gap
between the instantaneous energy eigenstates, whereas θt
controls the relative strength of coherent tunneling to
energy bias [79]. If θt is fixed at all times, it corresponds
to a classical protocol. Otherwise, quantum coherence in
the energy eigenbasis is generated, implying a genuine
quantum protocol.
Resetting the qubit to the ground state j0i with a

probability close to 1 can be achieved with various control
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protocols. For example, we can either gradually increase
the energy gap ϵt from an initial value ϵ0 ≈ 0 to a final value
βϵτ ≫ 1 while also changing θt [56], or we can quench
the Hamiltonian at t ¼ 0 and let the system relax to an
equilibrium state close to j0ih0j. Here we particularly
consider the Pareto-optimal protocols [80], which optimize
two incompatible objectives: the success probability and
the average dissipated heat. Specifically, we solve the
optimization problem of minimizing the following multi-
objective functional:

F ½fϵt; θtg� ≔ λτβQ − ð1 − λÞFðϱτ; j0ih0jÞ: ð12Þ

Here, λ ∈ ½0; 1Þ is a weighting factor, and Fðϱ; σÞ ¼
trf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϱ
p

σ
ffiffiffi
ϱ

pp g2 is the fidelity of the two quantum states
ϱ and σ [81]. The first and second terms of the functional
correspond to the average dissipated heat and erasure
fidelity, respectively. When λ ¼ 0, the reliability of the
information erasure takes precedence over dissipation, and
the final state is optimized to be as close to the ground state
as possible. The λ > 0 case indicates that the dissipation is
also minimized under a given allowable error of the final
state. Because of physical limitations, imposing constraints
on the control parameters is reasonable. Hereinafter, we set
the following lower and upper bounds on the parameters
βϵt ∈ ½0.4; 10� and θt ∈ ½−π; π�.
Obtaining the analytical solution for the optimization

problem in Eq. (12) under the given constraints is a
daunting task. Hence, we numerically solve the optimal
protocol by discretizing the protocol and minimizing the
functional F by using a nonlinear programming method
[57]. To demonstrate the effect of quantum coherence
on information erasure, we consider ϱ0 ¼ I=2. The initial
state thus does not contain any amount of coherence.
We examine two control protocols: the “optimal” protocol
found through the nonlinear programming method for
λ > 0 satisfying ð1 − λÞ=λ ¼ 104 and the “nonoptimal”
protocol used in Ref. [56], in which ϵt ¼ ϵ0 þ ðϵτ −
ϵ0Þ sinðπt=2τÞ2 and θt ¼ πðt=τ − 1Þ. Both protocols drive
the system to the ground state with the same order of error
at the final time. Figure 1(a) shows the time variation of the
control parameters ϵt and θt for each protocol. The energy
gap ϵt in each protocol increases gradually in different ways
and eventually reaches the same value. Interestingly, in the
optimal protocol, θt is always fixed at 0; hence, no
coherence is created during the period τ. On the other
hand, the nonoptimal protocol constantly changes θt and
generates quantum coherence. We express the density
matrix in the Bloch representation and plot the time
evolution of the Bloch vector in Fig. 1(b). Notice that
the qubit evolves through completely different paths toward
the ground state for each protocol. Figure 1(c) shows the
average dissipated heat for each protocol at each time. Note
also that the optimal protocol clearly dissipates less heat

than the nonoptimal protocol, which is consistent with our
finding that the generation of coherence incurs additional
heat costs.
From an energetic point of view, quantum coherence has

been shown to be detrimental to the erasure of information.
To optimize dissipation, the qubit should behave as a
classical bit. Further, we numerically find that this is the
case even when dissipation is not minimized—that is, when
λ ¼ 0. In other words, quenching the Hamiltonian to H0 ¼
ϵτσz=2 at time t ¼ 0 and relaxing the system to equilibrium
is the best protocol to bring the qubit as close as possible to
the ground state. We conjecture that the quench protocol,
namely, thermal relaxation, is the optimal protocol in terms
of erasure reliability. Note that the conjecture is restricted
to the ϱ0 ¼ I=2 case because the shortcut-to-equilibration
protocol [82] or an optimal protocol [57] may outperform
the quench protocol for the ϱ0 ≠ I=2 case. When the initial
state is not described by the maximally mixed state and
contains some coherence, we also find that the optimal
protocol hardly produces quantum coherence as compared
to the nonoptimal protocol (see the Supplemental Material
[57] for details). From the analytical and numerical
evidence, we can conclude that the creation of quantum
coherence should be avoided when erasing information.
Next, we investigate the performance of the bound

inequality (3) with optimal and nonoptimal protocols.
We vary the operational time and plot the dissipated heat
βQ, derived boundΔSþ kϱ0 − ϱτk21=ð2τγ̄τÞ, Landauer cost
ΔS, and coherence term γ̄Rτ C2τ=ð2τÞ as functions of τ in
Fig. 2. Notice that the dissipated heat is always bounded
from below by the bound inequality (3) and is far beyond

FIG. 1. Numerical results obtained with the optimal and
nonoptimal protocols, depicted by the red and blue lines,
respectively. (a) Time variations of the control parameters ϵt
and θt. (b) Geometrical representation of the time evolution of
the qubit on the Bloch sphere. (c) Average dissipated heat over
time. Other parameters are given by α ¼ 0.2, β ¼ 1, ϵ0 ¼ 0.4,
ϵτ ¼ 10, and τ ¼ 10.
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the Landauer cost. Particularly, in the case of the optimal
protocol, the derived bound is tight and asymptotically
saturated as τ increases. The optimal protocol is also
less dissipative than the nonoptimal protocol for all opera-
tional times. Simultaneously, the optimal protocol does not
create coherence, whereas a positive amount of coherence
is generated in the nonoptimal protocol. Regarding the
tightness of the derived bounds, inequality (3) can be
tighter or looser than inequality (10). If little or no
coherence is produced, the former is generally tighter than
the latter. Conversely, when a large amount of coherence is
generated—that is, when Cτ ≫ 1—the latter is stronger
than the former (see the Supplemental Material [57] for
numerical illustrations).
Summary.—We derived the lower bound on the thermo-

dynamic cost associated with finite-time information era-
sure for Markovian open quantum dynamics. The bound is
far beyond the Landauer cost for fast control protocols. We
also revealed the relation between quantum coherence
and heat dissipation for the entire driving speed regime,
stating that the creation of quantum coherence inevitably
causes additional heat costs. In the context of the Landauer
principle, this relation implies that quantum coherence is
detrimental to erasing information from an energetic view-
point. We confirmed the results with both optimal and
nonoptimal protocols. Our findings are not only funda-
mentally critical but also helpful in establishing a design
principle for efficient memory erasure. The generalization
of the results obtained here to other cases, such as the finite-
size environments and the non-Markovian regime [83], is a
future study.
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